from small one page howto to huge articles all in one place
 

search text in:





Poll
Which linux distribution do you use?







poll results

Last additions:
using iotop to find disk usage hogs

using iotop to find disk usage hogs

words:

887

views:

196714

userrating:

average rating: 1.7 (102 votes) (1=very good 6=terrible)


May 25th. 2007:
Words

486

Views

252324

why adblockers are bad


Workaround and fixes for the current Core Dump Handling vulnerability affected kernels

Workaround and fixes for the current Core Dump Handling vulnerability affected kernels

words:

161

views:

141294

userrating:

average rating: 1.4 (42 votes) (1=very good 6=terrible)


April, 26th. 2006:

Druckversion
You are here: manpages





SHM_OPEN

Section: Linux Programmer's Manual (3)
Updated: 2017-09-15
Index Return to Main Contents
 

NAME

shm_open, shm_unlink - create/open or unlink POSIX shared memory objects  

SYNOPSIS

#include <sys/mman.h>
#include <sys/stat.h> /* For mode constants */
#include <fcntl.h> /* For O_* constants */

int shm_open(const char *name, int oflag, mode_t mode);

int shm_unlink(const char *name);

Link with -lrt.  

DESCRIPTION

shm_open() creates and opens a new, or opens an existing, POSIX shared memory object. A POSIX shared memory object is in effect a handle which can be used by unrelated processes to mmap(2) the same region of shared memory. The shm_unlink() function performs the converse operation, removing an object previously created by shm_open().

The operation of shm_open() is analogous to that of open(2). name specifies the shared memory object to be created or opened. For portable use, a shared memory object should be identified by a name of the form /somename; that is, a null-terminated string of up to NAME_MAX (i.e., 255) characters consisting of an initial slash, followed by one or more characters, none of which are slashes.

oflag is a bit mask created by ORing together exactly one of O_RDONLY or O_RDWR and any of the other flags listed here:

O_RDONLY
Open the object for read access. A shared memory object opened in this way can be mmap(2)ed only for read (PROT_READ) access.
O_RDWR
Open the object for read-write access.
O_CREAT
Create the shared memory object if it does not exist. The user and group ownership of the object are taken from the corresponding effective IDs of the calling process, and the object's permission bits are set according to the low-order 9 bits of mode, except that those bits set in the process file mode creation mask (see umask(2)) are cleared for the new object. A set of macro constants which can be used to define mode is listed in open(2). (Symbolic definitions of these constants can be obtained by including <sys/stat.h>.)
A new shared memory object initially has zero length---the size of the object can be set using ftruncate(2). The newly allocated bytes of a shared memory object are automatically initialized to 0.
O_EXCL
If O_CREAT was also specified, and a shared memory object with the given name already exists, return an error. The check for the existence of the object, and its creation if it does not exist, are performed atomically.
O_TRUNC
If the shared memory object already exists, truncate it to zero bytes.

Definitions of these flag values can be obtained by including <fcntl.h>.

On successful completion shm_open() returns a new file descriptor referring to the shared memory object. This file descriptor is guaranteed to be the lowest-numbered file descriptor not previously opened within the process. The FD_CLOEXEC flag (see fcntl(2)) is set for the file descriptor.

The file descriptor is normally used in subsequent calls to ftruncate(2) (for a newly created object) and mmap(2). After a call to mmap(2) the file descriptor may be closed without affecting the memory mapping.

The operation of shm_unlink() is analogous to unlink(2): it removes a shared memory object name, and, once all processes have unmapped the object, de-allocates and destroys the contents of the associated memory region. After a successful shm_unlink(), attempts to shm_open() an object with the same name will fail (unless O_CREAT was specified, in which case a new, distinct object is created).  

RETURN VALUE

On success, shm_open() returns a nonnegative file descriptor. On failure, shm_open() returns -1. shm_unlink() returns 0 on success, or -1 on error.  

ERRORS

On failure, errno is set to indicate the cause of the error. Values which may appear in errno include the following:
EACCES
Permission to shm_unlink() the shared memory object was denied.
EACCES
Permission was denied to shm_open() name in the specified mode, or O_TRUNC was specified and the caller does not have write permission on the object.
EEXIST
Both O_CREAT and O_EXCL were specified to shm_open() and the shared memory object specified by name already exists.
EINVAL
The name argument to shm_open() was invalid.
EMFILE
The per-process limit on the number of open file descriptors has been reached.
ENAMETOOLONG
The length of name exceeds PATH_MAX.
ENFILE
The system-wide limit on the total number of open files has been reached.
ENOENT
An attempt was made to shm_open() a name that did not exist, and O_CREAT was not specified.
ENOENT
An attempt was to made to shm_unlink() a name that does not exist.
 

VERSIONS

These functions are provided in glibc 2.2 and later.  

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
InterfaceAttributeValue
shm_open(), shm_unlink() Thread safetyMT-Safe locale

 

CONFORMING TO

POSIX.1-2001, POSIX.1-2008.

POSIX.1-2001 says that the group ownership of a newly created shared memory object is set to either the calling process's effective group ID or "a system default group ID". POSIX.1-2008 says that the group ownership may be set to either the calling process's effective group ID or, if the object is visible in the filesystem, the group ID of the parent directory.  

NOTES

POSIX leaves the behavior of the combination of O_RDONLY and O_TRUNC unspecified. On Linux, this will successfully truncate an existing shared memory object---this may not be so on other UNIX systems.

The POSIX shared memory object implementation on Linux makes use of a dedicated tmpfs(5) filesystem that is normally mounted under /dev/shm.  

SEE ALSO

close(2), fchmod(2), fchown(2), fcntl(2), fstat(2), ftruncate(2), memfd_create(2), mmap(2), open(2), umask(2), shm_overview(7)  

COLOPHON

This page is part of release 4.13 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.


 

Index

NAME
SYNOPSIS
DESCRIPTION
RETURN VALUE
ERRORS
VERSIONS
ATTRIBUTES
CONFORMING TO
NOTES
SEE ALSO
COLOPHON





Support us on Content Nation
rdf newsfeed | rss newsfeed | Atom newsfeed
- Powered by LeopardCMS - Running on Gentoo -
Copyright 2004-2020 Sascha Nitsch Unternehmensberatung GmbH
Valid XHTML1.1 : Valid CSS : buttonmaker
- Level Triple-A Conformance to Web Content Accessibility Guidelines 1.0 -
- Copyright and legal notices -
Time to create this page: 16.9 ms