FANOTIFY
Section: Linux Programmer's Manual (7)
Updated: 2017-09-15
Index
Return to Main Contents
NAME
fanotify - monitoring filesystem events
DESCRIPTION
The fanotify API provides notification and interception of
filesystem events.
Use cases include virus scanning and hierarchical storage management.
Currently, only a limited set of events is supported.
In particular, there is no support for create, delete, and move events.
(See
inotify(7)
for details of an API that does notify those events.)
Additional capabilities compared to the
inotify(7)
API include the ability to monitor all of the objects
in a mounted filesystem,
the ability to make access permission decisions, and the
possibility to read or modify files before access by other applications.
The following system calls are used with this API:
fanotify_init(2),
fanotify_mark(2),
read(2),
write(2),
and
close(2).
fanotify_init(), fanotify_mark(), and notification groups
The
fanotify_init(2)
system call creates and initializes an fanotify notification group
and returns a file descriptor referring to it.
An fanotify notification group is a kernel-internal object that holds
a list of files, directories, and mount points for which events shall be
created.
For each entry in an fanotify notification group, two bit masks exist: the
mark
mask and the
ignore
mask.
The mark mask defines file activities for which an event shall be created.
The ignore mask defines activities for which no event shall be generated.
Having these two types of masks permits a mount point or directory to be
marked for receiving events, while at the same time ignoring events for
specific objects under that mount point or directory.
The
fanotify_mark(2)
system call adds a file, directory, or mount to a notification group
and specifies which events
shall be reported (or ignored), or removes or modifies such an entry.
A possible usage of the ignore mask is for a file cache.
Events of interest for a file cache are modification of a file and closing
of the same.
Hence, the cached directory or mount point is to be marked to receive these
events.
After receiving the first event informing that a file has been modified,
the corresponding cache entry will be invalidated.
No further modification events for this file are of interest until the file
is closed.
Hence, the modify event can be added to the ignore mask.
Upon receiving the close event, the modify event can be removed from the
ignore mask and the file cache entry can be updated.
The entries in the fanotify notification groups refer to files and
directories via their inode number and to mounts via their mount ID.
If files or directories are renamed or moved within the same mount,
the respective entries survive.
If files or directories are deleted or moved to another mount or if mounts are
unmounted, the corresponding entries are deleted.
The event queue
As events occur on the filesystem objects monitored by a notification group,
the fanotify system generates events that are collected in a queue.
These events can then be read (using
read(2)
or similar)
from the fanotify file descriptor
returned by
fanotify_init(2).
Two types of events are generated:
notification
events and
permission
events.
Notification events are merely informative
and require no action to be taken by
the receiving application except for closing the file descriptor passed
in the event (see below).
Permission events are requests to the receiving application to decide
whether permission for a file access shall be granted.
For these events, the recipient must write a response which decides whether
access is granted or not.
An event is removed from the event queue of the fanotify group
when it has been read.
Permission events that have been read are kept in an internal list of the
fanotify group until either a permission decision has been taken by
writing to the fanotify file descriptor or the fanotify file descriptor
is closed.
Reading fanotify events
Calling
read(2)
for the file descriptor returned by
fanotify_init(2)
blocks (if the flag
FAN_NONBLOCK
is not specified in the call to
fanotify_init(2))
until either a file event occurs or the call is interrupted by a signal
(see
signal(7)).
After a successful
read(2),
the read buffer contains one or more of the following structures:
struct fanotify_event_metadata {
__u32 event_len;
__u8 vers;
__u8 reserved;
__u16 metadata_len;
__aligned_u64 mask;
__s32 fd;
__s32 pid;
};
For performance reasons, it is recommended to use a large
buffer size (for example, 4096 bytes),
so that multiple events can be retrieved by a single
read(2).
The return value of
read(2)
is the number of bytes placed in the buffer,
or -1 in case of an error (but see BUGS).
The fields of the
fanotify_event_metadata
structure are as follows:
- event_len
-
This is the length of the data for the current event and the offset
to the next event in the buffer.
In the current implementation, the value of
event_len
is always
FAN_EVENT_METADATA_LEN.
However, the API is designed to allow
variable-length structures to be returned in the future.
- vers
-
This field holds a version number for the structure.
It must be compared to
FANOTIFY_METADATA_VERSION
to verify that the structures returned at runtime match
the structures defined at compile time.
In case of a mismatch, the application should abandon trying to use the
fanotify file descriptor.
- reserved
-
This field is not used.
- metadata_len
-
This is the length of the structure.
The field was introduced to facilitate the implementation of
optional headers per event type.
No such optional headers exist in the current implementation.
- mask
-
This is a bit mask describing the event (see below).
- fd
-
This is an open file descriptor for the object being accessed, or
FAN_NOFD
if a queue overflow occurred.
The file descriptor can be used to access the contents
of the monitored file or directory.
The reading application is responsible for closing this file descriptor.
-
When calling
fanotify_init(2),
the caller may specify (via the
event_f_flags
argument) various file status flags that are to be set
on the open file description that corresponds to this file descriptor.
In addition, the (kernel-internal)
FMODE_NONOTIFY
file status flag is set on the open file description.
This flag suppresses fanotify event generation.
Hence, when the receiver of the fanotify event accesses the notified file or
directory using this file descriptor, no additional events will be created.
- pid
-
This is the ID of the process that caused the event.
A program listening to fanotify events can compare this PID
to the PID returned by
getpid(2),
to determine whether the event is caused by the listener itself,
or is due to a file access by another process.
The bit mask in
mask
indicates which events have occurred for a single filesystem object.
Multiple bits may be set in this mask,
if more than one event occurred for the monitored filesystem object.
In particular,
consecutive events for the same filesystem object and originating from the
same process may be merged into a single event, with the exception that two
permission events are never merged into one queue entry.
The bits that may appear in
mask
are as follows:
- FAN_ACCESS
-
A file or a directory (but see BUGS) was accessed (read).
- FAN_OPEN
-
A file or a directory was opened.
- FAN_MODIFY
-
A file was modified.
- FAN_CLOSE_WRITE
-
A file that was opened for writing
(O_WRONLY
or
O_RDWR)
was closed.
- FAN_CLOSE_NOWRITE
-
A file or directory that was opened read-only
(O_RDONLY)
was closed.
- FAN_Q_OVERFLOW
-
The event queue exceeded the limit of 16384 entries.
This limit can be overridden by specifying the
FAN_UNLIMITED_QUEUE
flag when calling
fanotify_init(2).
- FAN_ACCESS_PERM
-
An application wants to read a file or directory, for example using
read(2)
or
readdir(2).
The reader must write a response (as described below)
that determines whether the permission to
access the filesystem object shall be granted.
- FAN_OPEN_PERM
-
An application wants to open a file or directory.
The reader must write a response that determines whether the permission to
open the filesystem object shall be granted.
To check for any close event, the following bit mask may be used:
- FAN_CLOSE
-
A file was closed.
This is a synonym for:
-
FAN_CLOSE_WRITE | FAN_CLOSE_NOWRITE
The following macros are provided to iterate over a buffer containing
fanotify event metadata returned by a
read(2)
from an fanotify file descriptor:
- FAN_EVENT_OK(meta, len)
-
This macro checks the remaining length
len
of the buffer
meta
against the length of the metadata structure and the
event_len
field of the first metadata structure in the buffer.
- FAN_EVENT_NEXT(meta, len)
-
This macro uses the length indicated in the
event_len
field of the metadata structure pointed to by
meta
to calculate the address of the next metadata structure that follows
meta.
len
is the number of bytes of metadata that currently remain in the buffer.
The macro returns a pointer to the next metadata structure that follows
meta,
and reduces
len
by the number of bytes in the metadata structure that
has been skipped over (i.e., it subtracts
meta->event_len
from
len).
In addition, there is:
- FAN_EVENT_METADATA_LEN
-
This macro returns the size (in bytes) of the structure
fanotify_event_metadata.
This is the minimum size (and currently the only size) of any event metadata.
Monitoring an fanotify file descriptor for events
When an fanotify event occurs, the fanotify file descriptor indicates as
readable when passed to
epoll(7),
poll(2),
or
select(2).
Dealing with permission events
For permission events, the application must
write(2)
a structure of the following form to the
fanotify file descriptor:
struct fanotify_response {
__s32 fd;
__u32 response;
};
The fields of this structure are as follows:
- fd
-
This is the file descriptor from the structure
fanotify_event_metadata.
- response
-
This field indicates whether or not the permission is to be granted.
Its value must be either
FAN_ALLOW
to allow the file operation or
FAN_DENY
to deny the file operation.
If access is denied, the requesting application call will receive an
EPERM
error.
Closing the fanotify file descriptor
When all file descriptors referring to the fanotify notification group are
closed, the fanotify group is released and its resources
are freed for reuse by the kernel.
Upon
close(2),
outstanding permission events will be set to allowed.
/proc/[pid]/fdinfo
The file
/proc/[pid]/fdinfo/[fd]
contains information about fanotify marks for file descriptor
fd
of process
pid.
See
proc(5)
for details.
ERRORS
In addition to the usual errors for
read(2),
the following errors can occur when reading from the
fanotify file descriptor:
- EINVAL
-
The buffer is too small to hold the event.
- EMFILE
-
The per-process limit on the number of open files has been reached.
See the description of
RLIMIT_NOFILE
in
getrlimit(2).
- ENFILE
-
The system-wide limit on the total number of open files has been reached.
See
/proc/sys/fs/file-max
in
proc(5).
- ETXTBSY
-
This error is returned by
read(2)
if
O_RDWR
or
O_WRONLY
was specified in the
event_f_flags
argument when calling
fanotify_init(2)
and an event occurred for a monitored file that is currently being executed.
In addition to the usual errors for
write(2),
the following errors can occur when writing to the fanotify file descriptor:
- EINVAL
-
Fanotify access permissions are not enabled in the kernel configuration
or the value of
response
in the response structure is not valid.
- ENOENT
-
The file descriptor
fd
in the response structure is not valid.
This may occur when a response for the permission event has already been
written.
VERSIONS
The fanotify API was introduced in version 2.6.36 of the Linux kernel and
enabled in version 2.6.37.
Fdinfo support was added in version 3.8.
CONFORMING TO
The fanotify API is Linux-specific.
NOTES
The fanotify API is available only if the kernel was built with the
CONFIG_FANOTIFY
configuration option enabled.
In addition, fanotify permission handling is available only if the
CONFIG_FANOTIFY_ACCESS_PERMISSIONS
configuration option is enabled.
Limitations and caveats
Fanotify reports only events that a user-space program triggers through the
filesystem API.
As a result,
it does not catch remote events that occur on network filesystems.
The fanotify API does not report file accesses and modifications that
may occur because of
mmap(2),
msync(2),
and
munmap(2).
Events for directories are created only if the directory itself is opened,
read, and closed.
Adding, removing, or changing children of a marked directory does not create
events for the monitored directory itself.
Fanotify monitoring of directories is not recursive:
to monitor subdirectories under a directory,
additional marks must be created.
(But note that the fanotify API provides no way of detecting when a
subdirectory has been created under a marked directory,
which makes recursive monitoring difficult.)
Monitoring mounts offers the capability to monitor a whole directory tree.
The event queue can overflow.
In this case, events are lost.
BUGS
Before Linux 3.19,
fallocate(2)
did not generate fanotify events.
Since Linux 3.19,
calls to
fallocate(2)
generate
FAN_MODIFY
events.
As of Linux 3.17,
the following bugs exist:
- *
-
On Linux, a filesystem object may be accessible through multiple paths,
for example, a part of a filesystem may be remounted using the
--bind
option of
mount(8).
A listener that marked a mount will be notified only of events that were
triggered for a filesystem object using the same mount.
Any other event will pass unnoticed.
- *
-
When an event is generated,
no check is made to see whether the user ID of the
receiving process has authorization to read or write the file
before passing a file descriptor for that file.
This poses a security risk, when the
CAP_SYS_ADMIN
capability is set for programs executed by unprivileged users.
- *
-
If a call to
read(2)
processes multiple events from the fanotify queue and an error occurs,
the return value will be the total length of the events successfully
copied to the user-space buffer before the error occurred.
The return value will not be -1, and
errno
will not be set.
Thus, the reading application has no way to detect the error.
EXAMPLE
The following program demonstrates the usage of the fanotify API.
It marks the mount point passed as a command-line argument
and waits for events of type
FAN_PERM_OPEN
and
FAN_CLOSE_WRITE.
When a permission event occurs, a
FAN_ALLOW
response is given.
The following output was recorded while editing the file
/home/user/temp/notes.
Before the file was opened, a
FAN_OPEN_PERM
event occurred.
After the file was closed, a
FAN_CLOSE_WRITE
event occurred.
Execution of the program ends when the user presses the ENTER key.
Example output
# ./fanotify_example /home
Press enter key to terminate.
Listening for events.
FAN_OPEN_PERM: File /home/user/temp/notes
FAN_CLOSE_WRITE: File /home/user/temp/notes
Listening for events stopped.
Program source
#define _GNU_SOURCE /* Needed to get O_LARGEFILE definition */
#include <
errno.h>
#include <
fcntl.h>
#include <
limits.h>
#include <
poll.h>
#include <
stdio.h>
#include <
stdlib.h>
#include <
sys/fanotify.h>
#include <
unistd.h>
/* Read all available fanotify events from the file descriptor 'fd' */
static void
handle_events(int fd)
{
const struct fanotify_event_metadata *metadata;
struct fanotify_event_metadata buf[200];
ssize_t len;
char path[PATH_MAX];
ssize_t path_len;
char procfd_path[PATH_MAX];
struct fanotify_response response;
/* Loop while events can be read from fanotify file descriptor */
for(;;) {
/* Read some events */
len = read(fd, (void *) &buf, sizeof(buf));
if (len == -1 && errno != EAGAIN) {
perror("read");
exit(EXIT_FAILURE);
}
/* Check if end of available data reached */
if (len <= 0)
break;
/* Point to the first event in the buffer */
metadata = buf;
/* Loop over all events in the buffer */
while (FAN_EVENT_OK(metadata, len)) {
/* Check that run-time and compile-time structures match */
if (metadata->vers != FANOTIFY_METADATA_VERSION) {
fprintf(stderr,
"Mismatch of fanotify metadata version.\n");
exit(EXIT_FAILURE);
}
/* metadata->fd contains either FAN_NOFD, indicating a
queue overflow, or a file descriptor (a nonnegative
integer). Here, we simply ignore queue overflow. */
if (metadata->fd >= 0) {
/* Handle open permission event */
if (metadata->mask & FAN_OPEN_PERM) {
printf("FAN_OPEN_PERM: ");
/* Allow file to be opened */
response.fd = metadata->fd;
response.response = FAN_ALLOW;
write(fd, &response,
sizeof(struct fanotify_response));
}
/* Handle closing of writable file event */
if (metadata->mask & FAN_CLOSE_WRITE)
printf("FAN_CLOSE_WRITE: ");
/* Retrieve and print pathname of the accessed file */
snprintf(procfd_path, sizeof(procfd_path),
"/proc/self/fd/%d", metadata->fd);
path_len = readlink(procfd_path, path,
sizeof(path) - 1);
if (path_len == -1) {
perror("readlink");
exit(EXIT_FAILURE);
}
path[path_len] = '\0';
printf("File %s\n", path);
/* Close the file descriptor of the event */
close(metadata->fd);
}
/* Advance to next event */
metadata = FAN_EVENT_NEXT(metadata, len);
}
}
}
int
main(int argc, char *argv[])
{
char buf;
int fd, poll_num;
nfds_t nfds;
struct pollfd fds[2];
/* Check mount point is supplied */
if (argc != 2) {
fprintf(stderr, "Usage: %s MOUNT\n", argv[0]);
exit(EXIT_FAILURE);
}
printf("Press enter key to terminate.\n");
/* Create the file descriptor for accessing the fanotify API */
fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT | FAN_NONBLOCK,
O_RDONLY | O_LARGEFILE);
if (fd == -1) {
perror("fanotify_init");
exit(EXIT_FAILURE);
}
/* Mark the mount for:
- permission events before opening files
- notification events after closing a write-enabled
file descriptor */
if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,
FAN_OPEN_PERM | FAN_CLOSE_WRITE, AT_FDCWD,
argv[1]) == -1) {
perror("fanotify_mark");
exit(EXIT_FAILURE);
}
/* Prepare for polling */
nfds = 2;
/* Console input */
fds[0].fd = STDIN_FILENO;
fds[0].events = POLLIN;
/* Fanotify input */
fds[1].fd = fd;
fds[1].events = POLLIN;
/* This is the loop to wait for incoming events */
printf("Listening for events.\n");
while (1) {
poll_num = poll(fds, nfds, -1);
if (poll_num == -1) {
if (errno == EINTR) /* Interrupted by a signal */
continue; /* Restart poll() */
perror("poll"); /* Unexpected error */
exit(EXIT_FAILURE);
}
if (poll_num > 0) {
if (fds[0].revents & POLLIN) {
/* Console input is available: empty stdin and quit */
while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')
continue;
break;
}
if (fds[1].revents & POLLIN) {
/* Fanotify events are available */
handle_events(fd);
}
}
}
printf("Listening for events stopped.\n");
exit(EXIT_SUCCESS);
}
SEE ALSO
fanotify_init(2),
fanotify_mark(2),
inotify(7)
COLOPHON
This page is part of release 4.13 of the Linux
man-pages
project.
A description of the project,
information about reporting bugs,
and the latest version of this page,
can be found at
https://www.kernel.org/doc/man-pages/.
Index
- NAME
-
- DESCRIPTION
-
- fanotify_init(), fanotify_mark(), and notification groups
-
- The event queue
-
- Reading fanotify events
-
- Monitoring an fanotify file descriptor for events
-
- Dealing with permission events
-
- Closing the fanotify file descriptor
-
- /proc/[pid]/fdinfo
-
- ERRORS
-
- VERSIONS
-
- CONFORMING TO
-
- NOTES
-
- Limitations and caveats
-
- BUGS
-
- EXAMPLE
-
- Example output
-
- Program source
-
- SEE ALSO
-
- COLOPHON
-