www.LinuxHowtos.org





SYSCALL

Section: Linux Programmer's Manual (2)
Updated: 2017-09-15
Index Return to Main Contents
 

NAME

syscall - indirect system call  

SYNOPSIS

#define _GNU_SOURCE         /* See feature_test_macros(7) */
#include <unistd.h>
#include <sys/syscall.h>   /* For SYS_xxx definitions */

long syscall(long number, ...);
 

DESCRIPTION

syscall() is a small library function that invokes the system call whose assembly language interface has the specified number with the specified arguments. Employing syscall() is useful, for example, when invoking a system call that has no wrapper function in the C library.

syscall() saves CPU registers before making the system call, restores the registers upon return from the system call, and stores any error code returned by the system call in errno(3) if an error occurs.

Symbolic constants for system call numbers can be found in the header file <sys/syscall.h>.  

RETURN VALUE

The return value is defined by the system call being invoked. In general, a 0 return value indicates success. A -1 return value indicates an error, and an error code is stored in errno.  

NOTES

syscall() first appeared in 4BSD.  

Architecture-specific requirements

Each architecture ABI has its own requirements on how system call arguments are passed to the kernel. For system calls that have a glibc wrapper (e.g., most system calls), glibc handles the details of copying arguments to the right registers in a manner suitable for the architecture. However, when using syscall() to make a system call, the caller might need to handle architecture-dependent details; this requirement is most commonly encountered on certain 32-bit architectures.

For example, on the ARM architecture Embedded ABI (EABI), a 64-bit value (e.g., long long) must be aligned to an even register pair. Thus, using syscall() instead of the wrapper provided by glibc, the readahead() system call would be invoked as follows on the ARM architecture with the EABI in little endian mode:

syscall(SYS_readahead, fd, 0,
        (unsigned int) (offset & 0xFFFFFFFF),
        (unsigned int) (offset >> 32),
        count);

Since the offset argument is 64 bits, and the first argument (fd) is passed in r0, the caller must manually split and align the 64-bit value so that it is passed in the r2/r3 register pair. That means inserting a dummy value into r1 (the second argument of 0). Care also must be taken so that the split follows endian conventions (according to the C ABI for the platform).

Similar issues can occur on MIPS with the O32 ABI, on PowerPC with the 32-bit ABI, and on Xtensa.

Note that while the parisc C ABI also uses aligned register pairs, it uses a shim layer to hide the issue from userspace.

The affected system calls are fadvise64_64(2), ftruncate64(2), posix_fadvise(2), pread64(2), pwrite64(2), readahead(2), sync_file_range(2), and truncate64(2).

This does not affect syscalls that manually split and assemble 64-bit values such as _llseek(2), preadv(2), preadv2(2), pwritev(2). and pwritev2(2). Welcome to the wonderful world of historical baggage.  

Architecture calling conventions

Every architecture has its own way of invoking and passing arguments to the kernel. The details for various architectures are listed in the two tables below.

The first table lists the instruction used to transition to kernel mode (which might not be the fastest or best way to transition to the kernel, so you might have to refer to vdso(7)), the register used to indicate the system call number, the register used to return the system call result, and the register used to signal an error.

arch/ABI  instruction  syscall #  retval  error  Notes

alpha  callsys  v0  a0  a3  [1]
arc  trap0  r8  r0  -  
arm/OABI  swi NR  -  a1  -  [2]
arm/EABI  swi 0x0  r7  r0  -  
arm64  svc #0  x8  x0  -  
blackfin  excpt 0x0  P0  R0  -  
i386  int $0x80  eax  eax  -  
ia64  break 0x100000  r15  r8  r10  [1]
m68k  trap #0  d0  d0  -  
microblaze  brki r14,8  r12  r3  -  
mips  syscall  v0  v0  a3  [1]
nios2  trap  r2  r2  r7  
parisc  ble 0x100(%sr2, %r0)  r20  r28  -  
powerpc  sc  r0  r3  r0  [1]
s390  svc 0  r1  r2  -  [3]
s390x  svc 0  r1  r2  -  [3]
superh  trap #0x17  r3  r0  -  [4]
sparc/32  t 0x10  g1  o0  psr/csr  [1]
sparc/64  t 0x6d  g1  o0  psr/csr  [1]
tile  swint1  R10  R00  R01  [1]
x86_64  syscall  rax  rax  -  [5]
x32  syscall  rax  rax  -  [5]
xtensa  syscall  a2  a2  -  

Notes:

[1]
On a few architectures, a register is used as a boolean (0 indicating no error, and -1 indicating an error) to signal that the system call failed. The actual error value is still contained in the return register. On sparc, the carry bit (csr) in the processor status register (psr) is used instead of a full register.
[2]
NR is the system call number.
[3]
For s390 and s390x, NR (the system call number) may be passed directly with svc NR if it is less than 256.
[4]
On SuperH, the trap number controls the maximum number of arguments passed. A trap #0x10 can be used with only 0-argument system calls, a trap #0x11 can be used with 0- or 1-argument system calls, and so on up to trap #0x17 for 7-argument system calls.
[5]
The x32 ABI uses the same instruction as the x86_64 ABI and is used on the same processors. To differentiate between them, the bit mask __X32_SYSCALL_BIT is bitwise-ORed into the system call number for system calls under the x32 ABI. Both system call tables are available though, so setting the bit is not a hard requirement.

The second table shows the registers used to pass the system call arguments.

arch/ABIarg1  arg2  arg3  arg4  arg5  arg6  arg7  Notes

alphaa0  a1  a2  a3  a4  a5  -  
arcr0  r1  r2  r3  r4  r5  -  
arm/OABIa1  a2  a3  a4  v1  v2  v3  
arm/EABIr0  r1  r2  r3  r4  r5  r6  
arm64x0  x1  x2  x3  x4  x5  -  
blackfinR0  R1  R2  R3  R4  R5  -  
i386ebx  ecx  edx  esi  edi  ebp  -  
ia64out0  out1  out2  out3  out4  out5  -  
m68kd1  d2  d3  d4  d5  a0  -  
microblazer5  r6  r7  r8  r9  r10  -  
mips/o32a0  a1  a2  a3  -  -  -  [1]
mips/n32,64a0  a1  a2  a3  a4  a5  -  
nios2r4  r5  r6  r7  r8  r9  -  
pariscr26  r25  r24  r23  r22  r21  -  
powerpcr3  r4  r5  r6  r7  r8  r9  
s390r2  r3  r4  r5  r6  r7  -  
s390xr2  r3  r4  r5  r6  r7  -  
superhr4  r5  r6  r7  r0  r1  r2  
sparc/32o0  o1  o2  o3  o4  o5  -  
sparc/64o0  o1  o2  o3  o4  o5  -  
tileR00  R01  R02  R03  R04  R05  -  
x86_64rdi  rsi  rdx  r10  r8  r9  -  
x32rdi  rsi  rdx  r10  r8  r9  -  
xtensaa6  a3  a4  a5  a8  a9  -  

Notes:

[1]
The mips/o32 system call convention passes arguments 5 through 8 on the user stack.

Note that these tables don't cover the entire calling convention---some architectures may indiscriminately clobber other registers not listed here.  

EXAMPLE

#define _GNU_SOURCE #include <unistd.h> #include <sys/syscall.h> #include <sys/types.h> #include <signal.h>

int main(int argc, char *argv[]) {
    pid_t tid;


    tid = syscall(SYS_gettid);
    syscall(SYS_tgkill, getpid(), tid, SIGHUP); }  

SEE ALSO

_syscall(2), intro(2), syscalls(2), errno(3), vdso(7)  

COLOPHON

This page is part of release 4.13 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.


 

Index

NAME
SYNOPSIS
DESCRIPTION
RETURN VALUE
NOTES
Architecture-specific requirements
Architecture calling conventions
EXAMPLE
SEE ALSO
COLOPHON