
Bash Prompt HOWTO
 $Revision: 1.2 $, $Date: 2003/11/08 14:37:43 $

Giles Orr
Copyright © 1998, 1999, 2000, 2001, 2003 Giles Orr

 Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in
the section entitled "GNU Free Documentation License".

Abstract
 Creating and controlling terminal and xterm prompts is discussed, including
incorporating standard escape sequences to give username, current working directory,
time, etc. Further suggestions are made on how to modify xterm title bars, use external
functions to provide prompt information, and how to use ANSI colours.

Table of Contents
1. Introduction and AdministriviaIntroductionRevision HistoryRequirementsHow To Use This
DocumentDocument Versions, Comments and
SuggestionsProblemsCredits/BibliographyDisclaimer2. Bash and Bash PromptsWhat is
Bash?What Can Tweaking Your Bash Prompt Do For You?Why Bother?The First StepBash
Prompt Escape SequencesSetting the PS? Strings Permanently3. Bash Programming and
Shell ScriptsVariablesQuotes and Special CharactersCommand SubstitutionNon-Printing
Characters in PromptsSourcing a FileFunctions, Aliases, and the Environment4. External
CommandsPROMPT_COMMANDExternal Commands in the PromptWhat to Put in Your
Prompt5. Saving Complex Prompts6. ANSI Escape Sequences: Colours and Cursor
MovementColoursCursor MovementXterm Title Bar ManipulationsXterm Title Bars and
ScreenColours and Cursor Movement With tput7. Special Characters: Octal Escape
Sequences8. The Bash Prompt PackageAvailabilityXterm FontsChanging the Xterm
FontLine Draw Characters without VGA Fonts9. Loading a Different PromptLoading a
Different Prompt, LaterLoading a Different Prompt, ImmediatelyLoading Different Prompts in
Different X Terms10. Loading Prompt Colours DynamicallyA "Proof of Concept" Example11.
Prompt Code SnippetsBuilt-in Escape SequencesDate and TimeCounting Files in the
Current DirectoryTotal Bytes in the Current DirectoryChecking the Current TTYStopped Jobs
CountLoadUptimeNumber of ProcessesControlling the Size and Appearance of
$PWDLaptop PowerHaving the Prompt Ignored on Cut and PasteNew MailPrompt Beeps
After Long-Running Commands12. Example PromptsExamples on the WebA "Lightweight"
PromptDan's PromptElite from Bashprompt ThemesA "Power User" PromptPrompt
Depending on Connection TypeA Prompt the Width of Your TermThe Floating Clock
PromptThe Elegant Useless Clock PromptA. GNU Free Documentation License0.
PREAMBLE1. APPLICABILITY AND DEFINITIONS2. VERBATIM COPYING3. COPYING IN
QUANTITY4. MODIFICATIONS5. COMBINING DOCUMENTS6. COLLECTIONS OF
DOCUMENTS7. AGGREGATION WITH INDEPENDENT WORKS8. TRANSLATION9.
TERMINATION10. FUTURE REVISIONS OF THIS LICENSEHow to use this License for
your documents

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 1 of 49

Chapter 1. Introduction and Administrivia

Table of Contents
IntroductionRevision HistoryRequirementsHow To Use This DocumentDocument Versions,
Comments and SuggestionsProblemsCredits/BibliographyDisclaimer

Introduction

 I've been maintaining this document for nearly six years (I believe the first submitted
version was January 1998). I've received a lot of e-mail, almost all of it positive with a lot
of great suggestions, and I've had a really good time doing this. Thanks to everyone for
the support, suggestions, and translations!

 I've had several requests both from individuals and the LDP group to issue a new
version of this document, and it's long past due (two and a half years since the last
version) - for which I apologize. Converting this monster to DocBook format was a
daunting task, and then when I realized that I could now include images, I decided I
needed to include all the cool examples that currently reside on my homepage. Adding
these is a slow process, especially since I'm improving the code as I go, so only a few are
 included so far. This document will probably always feel incomplete to me ... I think
however that it's reasonably sound from a technical point of view (although I have some
mailed in fixes that aren't in here yet - if you've heard from me, they'll get in here
eventually) so I'm going to post it and hope I can get to another version soon.

 One other revision of note: this document (as requested by the LDP) is now under the
GFDL. Enjoy.

Revision History

Revision HistoryRevision v0.932003-11-06Â Removal of very outdated "Translations"
section. Revision v0.922003-11-06Â Added section on line draw in RXVT.
Revision v0.912002-01-31Â Fixed text and code to "Total Bytes" snippet. Revision
v0.902001-08-24goAdded section on screen and Xterm titlebars. Revision
v0.892001-08-20goAdded clockt example, several example images added, improved
laptop power code, minor tweaks. Revision v0.852001-07-31goMajor revisions, plus change
from Linuxdoc to DocBook. Revision v0.761999-12-31goRevision
v0.601998-01-07goInitial public release?

Requirements

 You will need Bash. This should be easy: it's the default shell for just about every Linux
distribution I know of. The commonest version is now 2.0.x. Version 1.14.7 was the
standard for a long time, but that started to fade around 2000. I've been using Bash 2.0.x for
quite a while now. With recent revisions of the HOWTO (later than July 2001) I've been
using a lot of code (mainly ${} substitutions) that I believe is specific to 2.x and may not
work with Bash 1.x. You can check your Bash version by typing echo $BASH_VERSION at
the prompt. On my machine, it responds with 2.05a.0(1)-release.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 2 of 49

 Shell programming experience would be good, but isn't essential: the more you know, the
more complex the prompts you'll be able to create. I assume a basic knowledge of shell
programming and Unix utilities as I go through this tutorial. However, my own shell
programming skills are limited, so I give a lot of examples and explanation that may appear
unnecessary to an experienced shell programmer.

How To Use This Document

 I include a lot of examples and explanatory text. Different parts will be of varying
usefulness to different people. This has grown long enough that reading it straight through
would be difficult - just read the sections you need, backtrack as necessary.

Document Versions, Comments and Suggestions

 This is a learning experience for me. I've come to know a fair bit about what can be done
to create interesting and useful Bash Prompts, but I need your input to correct and improve
this document. I no longer make code checks against older versions of Bash, let me know
of any incompatibilities you find.

 The latest version of this document should always be available at
http://www.gilesorr.com/bashprompt/ (usually only in HTML format). The latest official
release should always be at http://www.tldp.org/. Please check these out, and feel free to
e-mail me at >giles at dreaming dot org> with suggestions.

 I use the Linux Documentation Project HOWTOs almost exclusively in the HTML format, so
when I convert this from DocBook SGML (its native format), HTML is the only format I check
thoroughly. If there are problems with other formats, I may not know about them and I'd
appreciate a note about them.

 There are issues with the PDF and RTF conversions (as of December 2000), including big
problems with example code wrapping around the screen and getting mangled. I always
keep my examples less than 80 characters wide, but the PDF version seems to wrap around
60. Please use online examples if the code in these versions don't work for you. But they
do look very pretty.

Problems

 This is a list of problems I've noticed while programming prompts. Don't start reading here,
and don't let this list discourage you - these are mostly quite minor details. Just check back
if you run into anything odd.

* Many Bash features (such as math within $(()) among others) are compile time options.
 If you're using a binary distribution such as comes with a standard Linux distribution, all
such features should be compiled in. But if you're working on someone else's system,
this is worth keeping in mind if something you expected to work doesn't. Some notes
about this in Learning the Bash Shell second edition, p.260-262.

* The terminal screen manager "screen" doesn't always get along with ANSI colours. I'm
not a screen expert, unfortunately. Versions older than 3.7.6 may cause problems, but
newer versions seem to work well in all cases. Old versions reduce all prompt colours to
the standard foreground colour in X terminals.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 3 of 49

* Xdefaults files can override colours. Look in ~/.Xdefaults for lines referring to
XTerm*background and XTerm*foreground (or possibly XTerm*Background and
XTerm*Foreground).

* One of the prompts mentioned in this document uses the output of "jobs" - as
discussed at that time, "jobs" output to a pipe is broken in Bash 2.02.

* ANSI cursor movement escape sequences aren't all implemented in all X terminals.
That's discussed in its own section.

* Some nice looking pseudo-graphics can be created by using a VGA font rather than
standard Linux fonts. Unfortunately, these effects look awful if you don't use a VGA font,
and there's no way to detect within a term what kind of font it's using.

* Things that work under Bash 1.14.7 don't necessarily work the same under 2.0+, or
vice versa.

* I often use the code PS1="...\\$${NO_COLOUR} " at the end of my PS1 string. The \\$
is replaced by a "$" for a normal user, and a "#" if you are root, and the
${NO_COLOUR} is an escape sequence that stops any colour modifications made by
the prompt. However, I've had problems seeing the "#" when I'm root. I believe this is
because Bash doesn't like two dollar signs in a row. Use PS1="...\\$ ${NO_COLOUR}"
instead. I'm still trying to figure out how to get rid of that extra space.

Credits/Bibliography

 In producing this document, I have borrowed heavily from the work of the Bashprompt
project, which was at http://bash.current.nu/. This site was removed from its server as of
July 2001 but Robert Current, the admin, assured me it would reappear soon.
Unfortunately, it appears he's now (May 2003) let his domain registration lapse. The work of
that project is carried on indirectly by Bashish (http://bashish.sourceforge.net/), with whom
I've had no contact. Other sources used include the xterm Title mini-HOWTO by Ric Lister,
available at http://www.tldp.org/HOWTO/mini/Xterm-Title.html, Ansi Prompts by Keebler,
available at http://www.ncal.verio.com/~keebler/ansi.html (now deceased), How to make a
Bash Prompt Theme by Stephen Webb, available at
http://bash.current.nu/bash/HOWTO.html (also deceased), and X ANSI Fonts by Stumpy,
available at http://home.earthlink.net/~us5zahns/enl/ansifont.html.

 Also of immense help were several conversations and e-mails from Dan, who used to work
at Georgia College & State University, whose knowledge of Unix far exceeded mine.
He gave me several excellent suggestions, and ideas of his have led to some interesting
prompts.

 Three books that have been very useful while programming prompts are Linux in a Nutshell
by Jessica Heckman Perry (O'Reilly, 3rd ed., 2000), Learning the Bash Shell by Cameron
Newham and Bill Rosenblatt (O'Reilly, 2nd ed., 1998) and Unix Shell Programming by
Lowell Jay Arthur (Wiley, 1986. This is the first edition, the fourth came out in 1997).

Disclaimer

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 4 of 49

 This document is available for free, and, while I have done the best I can to make it
accurate and up to date, I take no responsibility for any problems you may encounter
resulting from the use of this document.

Chapter 2. Bash and Bash Prompts

Table of Contents
What is Bash?What Can Tweaking Your Bash Prompt Do For You?Why Bother?The First
StepBash Prompt Escape SequencesSetting the PS? Strings Permanently

What is Bash?

Descended from the Bourne Shell, Bash is a GNU product, the"Bourne AgainSHell." It's the
standard command line interface onmost Linux machines. It excels at interactivity,
supporting command lineediting, completion, and recall. It also supports configurable
prompts -most people realize this, but don't know how much can be done.

What Can Tweaking Your Bash Prompt Do For You?

Most Linux systems have a default prompt in one colour (usually gray) thattells you your user
name, the name of the machine you're working on, andsome indication of your current
working directory. This is all usefulinformation, but you can do much more with the prompt:
all sorts ofinformation can be displayed (tty number, time, date, load, number ofusers, uptime
...) and the prompt can use ANSI colours, either to make itlook interesting, or to make certain
information stand out. You can alsomanipulate the title bar of an Xterm to reflect some of
this information.

Why Bother?

Beyond looking cool, it's often useful to keep track of system information.One idea that I
know appeals to some people is that it makes it possible toput prompts on different machines
in different colours. If you haveseveral Xterms open on several different machines, or if you
tend to forgetwhat machine you're working on and delete the wrong files (or shut down
theserver instead of the workstation), you'll find this a great way toremember what machine
you're on.

For myself, I like the utility of having information about my machineand work environment
available all the time. And I like the challenge oftrying to figure out how to put the maximum
amount of information into thesmallest possible space while maintaining readability.

Perhaps the most practical aspect of colourizing your prompt is theability to quickly spot the
prompt when you use scrollback.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 5 of 49

The First Step

The appearance of the prompt is governed by the shell variable PS1.Command continuations
are indicated by the PS2 string, which can bemodified in exactly the same ways discussed
here - since controlling it isexactly the same, and it isn't as "interesting," I'll mostly be
modifyingthe PS1 string. (There are also PS3 and PS4 strings. These are never seenby the
average user - see the Bash man page if you're interested in theirpurpose.) To change the
way the prompt looks, you change the PS1 variable.For experimentation purposes, you can
enter the PS1 strings directly at theprompt, and see the results immediately (this only affects
your currentsession, and the changes go away when you exit the current shell). If youwant
to make a change to the prompt permanent, look at the section belowthe section called
"Setting the PS? Strings Permanently".

Before we get started, it's important to remember that the PS1 string isstored in the
environment like any other environment variable. If youmodify it at the command line, your
prompt will change. Before you makeany changes, you can save your current prompt to
another environmentvariable:

[giles@nikola giles]$ SAVE=$PS1
[giles@nikola giles]$

The simplest prompt would be a single character, such as:

[giles@nikola giles]$ PS1=$
$ls
bin mail
$

This demonstrates the best way to experiment with basic prompts, enteringthem at the
command line. Notice that the text entered by the user appears immediately after the
prompt: I prefer to use

$PS1="$ "
$ ls
bin mail
$

which forces a space after the prompt, making it more readable. To restoreyour original
prompt, just call up the variable you stored:

$ PS1=$SAVE
[giles@nikola giles]$

Bash Prompt Escape Sequences

There are a lot of escape sequences offered by the Bash shell forinsertion in the prompt.
From the Bash 2.04 man page:

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 6 of 49

 When executing interactively, bash displays the primary
 prompt PS1 when it is ready to read a command, and the
 secondary prompt PS2 when it needs more input to complete
 a command. Bash allows these prompt strings to be cus-
 tomized by inserting a number of backslash-escaped special
 characters that are decoded as follows:
 \a an ASCII bell character (07)
 \d the date in "Weekday Month Date" format
 (e.g., "Tue May 26")
 \e an ASCII escape character (033)
 \h the hostname up to the first `.'
 \H the hostname
 \j the number of jobs currently managed by the
 shell
 \l the basename of the shell's terminal device
 name
 \n newline
 \r carriage return
 \s the name of the shell, the basename of $0
 (the portion following the final slash)
 \t the current time in 24-hour HH:MM:SS format
 \T the current time in 12-hour HH:MM:SS format
 \@ the current time in 12-hour am/pm format
 \u the username of the current user
 \v the version of bash (e.g., 2.00)
 \V the release of bash, version + patchlevel
 (e.g., 2.00.0)
 \w the current working directory
 \W the basename of the current working direc-
 tory
 \! the history number of this command
 \# the command number of this command
 \$ if the effective UID is 0, a #, otherwise a
 $
 \nnn the character corresponding to the octal
 number nnn
 \\ a backslash
 \[begin a sequence of non-printing characters,
 which could be used to embed a terminal con-
 trol sequence into the prompt
 \] end a sequence of non-printing characters

For long-time users, note the new \j and\l sequences: these are new in 2.03 or 2.04.
Continuing where we left off:

[giles@nikola giles]$ PS1="\u@\h \W> "
giles@nikola giles> ls
bin mail
giles@nikola giles>

This is similar to the default on most Linux distributions. I wanted aslightly different
appearance, so I changed this to:

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 7 of 49

giles@nikola giles> PS1="[\t][\u@\h:\w]\$ "
[21:52:01][giles@nikola:~]$ ls
bin mail
[21:52:15][giles@nikola:~]$

Setting the PS? Strings Permanently

Various people and distributions set their PS? strings in different places.The most common
places are /etc/profile, /etc/bashrc, ~/.bash_profile, and~/.bashrc . Johan Kullstam (johan19
at idt dot net) writes:

the PS1 string should be set in .bashrc. this is becausenon-interactive bashes go out of their
way to unset PS1. the bash manpage tells how the presence or absence of PS1 is a good
way of knowingwhether one is in an interactive vs non-interactive (ie script) bashsession.

the way i realized this is that startx is a bash script. what thismeans is, startx will wipe out
your prompt. when you set PS1 in.profile (or .bash_profile), login at console, fire up X via
startx,your PS1 gets nuked in the process leaving you with the defaultprompt.

one workaround is to launch xterms and rxvts with the -ls option toforce them to read .profile.
but any time a shell is called via anon-interactive shell-script middleman PS1 is lost.
system(3) uses sh-c which if sh is bash will kill PS1. a better way is to place thePS1
definition in .bashrc. this is read every time bash starts and iswhere interactive things - eg
PS1 should go.

therefore it should be stressed that PS1=..blah.. should be in .bashrcand not .profile.

I tried to duplicate the problem he explains, and encountered adifferent one: my
PROMPT_COMMAND variable (which will be introduced later)was blown away. My
knowledge in this area is somewhat shaky, so I'm goingto go with what Johan says.

Chapter 3. Bash Programming and Shell Scripts

Table of Contents
VariablesQuotes and Special CharactersCommand SubstitutionNon-Printing Characters in
PromptsSourcing a FileFunctions, Aliases, and the Environment

Variables

I'm not going to try to explain all the details of Bash scripting in asection of this HOWTO, just
the details pertaining to prompts. If you wantto know more about shell programming and
Bash in general, I highlyrecommend Learning the Bash Shell by Cameron Newhamand Bill
Rosenblatt (O'Reilly, 1998). Oddly, my copy of this book is quitefrayed. Again, I'm going to
assume that you know a fair bit about Bashalready. You can skip this section if you're only
looking for the basics,but remember it and refer back if you proceed much farther.

Variables in Bash are assigned much as they are in any programminglanguage:

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 8 of 49

testvar=5
foo=zen
bar="bash prompt"

Quotes are only needed in an assignment if a space (or special character,discussed shortly)
is a part of the variable.

Variables are referenced slightly differently than they are assigned:

> echo $testvar
5
> echo $foo
zen
> echo ${bar}
bash prompt
> echo $NotAssigned

>

A variable can be referred to as $bar or${bar}. The braces are useful when it is unclear
whatis being referenced: if I write $barley do I mean${bar}ley or ${barley}? Note alsothat
referencing a value that hasn't been assigned doesn't generate anerror, instead returning
nothing.

Quotes and Special Characters

If you wish to include a special character in a variable, you will have toquote it differently:

> newvar=$testvar
> echo $newvar
5
> newvar="$testvar"
> echo $newvar
5
> newvar='$testvar'
> echo $newvar
$testvar
> newvar=\$testvar
> echo $newvar
$testvar
>

The dollar sign isn't the only character that's special to the Bash shell,but it's a simple
example. An interesting step we can take to make use ofassigning a variable name to
another variable name is to useeval to dereference the stored variable name:

> echo $testvar
5
> echo $newvar
$testvar
> eval echo $newvar
5
>

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 9 of 49

Normally, the shell does only one round of substitutions on the expressionit is evaluating: if
you say echo $newvar the shellwill only go so far as to determine that $newvar isequal to the
text string $testvar, it won't evaluatewhat $testvar is equal to. evalforces that evaluation.

Command Substitution

In almost all cases in this document, I use the $(>command>)convention for command
substitution: that is,

$(date +%H%M)

means "substitute the output from the date +%H%Mcommand here." This works in Bash
2.0+. In some older versions of Bash,prior to 1.14.7, you may need to use backquotes
(`date+%H%M`). Backquotes can be used in Bash 2.0+, but are beingphased out in favor of
$(), which nests better. If you're using an earlierversion of Bash, you can usually substitute
backquotes where you see $().If the command substitution is escaped (ie. \$(command)),
then usebackslashes to escape BOTH your backquotes (ie. \'command\').

Non-Printing Characters in Prompts

Many of the changes that can be made to Bash prompts that are discussed inthis HOWTO
use non-printing characters. Changing the colour of the prompttext, changing an Xterm title
bar, and moving the cursor position allrequire non-printing characters.

If I want a very simple prompt consisting of a greater-than sign and aspace:

[giles@nikola giles]$ PS1='> '
>

This is just a two character prompt. If I modify it so that it's abright yellow greater-than sign
(colours are discussed in their ownsection):

> PS1='\033[1;33m>\033[0m '
>

This works fine - until you type in a large command line. Because theprompt still only
consists of two printing characters (a greater-than signand a space) but the shell thinks that
this prompt is eleven characterslong (I think it counts '\033' , '[1' and '[0' as one character
each). Youcan see this by typing a really long command line - you will find that theshell
wraps the text before it gets to the edge of the terminal, and inmost cases wraps it badly.
This is because it's confused about the actuallength of the prompt.

So use this instead:

> PS1='\[\033[1;33m\]>\[\033[0m\] '

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 10 of 49

This is more complex, but it works. Command lines wrap properly. What'sbeen done is to
enclose the '\033[1;33m' that starts the yellow colour in'\[' and '\]' which tells the shell
"everything between these escapedsquare brackets, including the brackets themselves, is a
non-printingcharacter." The same is done with the '\033[0m' that ends the colour.

Sourcing a File

When a file is sourced (by typing either sourcefilename or . filename at the commandline),
the lines of code in the file are executed as if they were printedat the command line. This is
particularly useful with complex prompts, toallow them to be stored in files and called up by
sourcing the file theyare in.

In examples, you will find that I often include#!/bin/bash at the beginning of files
includingfunctions. This is not necessary if you are sourcinga file, just as it isn't necessary to
chmod +x afile that is going to be sourced. I do this because it makes Vim (myeditor of
choice, no flames please - you use what you like) think I'mediting a shell script and turn on
colour syntax highlighting.

Functions, Aliases, and the Environment

As mentioned earlier, PS1, PS2, PS3, PS4, and PROMPT_COMMAND are all storedin the
Bash environment. For those of us coming from a DOS background, theidea of tossing big
hunks of code into the environment is horrifying, because that DOS environment was small,
and didn't exactly grow well.There are probably practical limits to what you can and should
put in theenvironment, but I don't know what they are, and we're probably talking acouple of
orders of magnitude larger than what DOS users are used to. AsDan put it:

"In my interactive shell I have 62 aliases and 25 functions. My ruleof thumb is that if I need
something solely for interactive use andcan handily write it in bash I make it a shell function
(assumingit can't be easily expressed as an alias). If these people areworried about memory
they don't need to be using bash. Bash is oneof the largest programs I run on my linux box
(outside of Oracle).Run top sometime and press 'M' to sort by memory - see how closebash
is to the top of the list. Heck, it's bigger than sendmail!Tell 'em to go get ash or something."

I guess he was using console only the day he tried that: running X and Xapps, I have a lot of
stuff larger than Bash. But the idea is the same:the environment is something to be used,
and don't worry about overfillingit.

I risk censure by Unix gurus when I say this (for the crime ofover-simplification), but functions
are basically small shell scripts thatare loaded into the environment for the purpose of
efficiency. Quoting Danagain: â€œShell functions are about as efficient as they can be. It is
theapproximate equivalent of sourcing a bash/bourne shell script save that nofile I/O need be
done as the function is already in memory. The shellfunctions are typically loaded from
[.bashrc or .bash_profile] depending onwhether you want them only in the initial shell or in
subshells as well.Contrast this with running a shell script: Your shell forks, the child doesan
exec, potentially the path is searched, the kernel opens the file andexamines enough bytes to
determine how to run the file, in the case of ashell script a shell must be started with the
name of the script as itsargument, the shell then opens the file, reads it and executes
thestatements. Compared to a shell function, everything other than executingthe statements
can be considered unnecessary overhead.â€•

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 11 of 49

Aliases are simple to create:

alias d="ls --color=tty --classify"
alias v="d --format=long"
alias rm="rm -i"

Any arguments you pass to the alias are passed to the command line of thealiased command
(ls in the first two cases). Note that aliases can benested, and they can be used to make a
normal unix command behave in adifferent way. (I agree with the argument that you
shouldn't use thelatter kind of aliases - if you get in the habit of relying on "rm *" toask you if
you're sure, you may lose important files on a system thatdoesn't use your alias.)

Functions are used for more complex program structures. As a general rule,use an alias for
anything that can be done in one line. Functions differfrom shell scripts in that they are
loaded into the environment so thatthey work more quickly. As a general rule again, you
would want tokeep functions relatively small, and any shell script that gets relativelylarge
should remain a shell script rather than turning it into a function.Your decision to load
something as a function is also going to depend onhow often you use it. If you use a small
shell script infrequently, leaveit as a shell script. If you use it often, turn it into a function.

To modify the behaviour of ls, you could dosomething like the following:

function lf
{
 ls --color=tty --classify $*
 echo "$(ls -l $* | wc -l) files"
}

This could readily be set as an alias, but for the sake of example, we'llmake it a function. If
you type the text shown into a text file and thensource that file, the function will be in your
environment, and beimmediately available at the command line without the overhead of a
shellscript mentioned previously. The usefulness of this becomes more obviousif you
consider adding more functionality to the above function, such asusing an if statement to
execute some special code when links are found inthe listing.

Chapter 4. External Commands

Table of Contents
PROMPT_COMMANDExternal Commands in the PromptWhat to Put in Your Prompt

PROMPT_COMMAND

Bash provides an environment variable called PROMPT_COMMAND.The contents of this
variable are executed as a regular Bash command justbefore Bash displays a prompt.

[21:55:01][giles@nikola:~] PS1="[\u@\h:\w]\$ "
[giles@nikola:~] PROMPT_COMMAND="date +%H%M"
2155
[giles@nikola:~] d
bin mail
2156
[giles@nikola:~]

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 12 of 49

What happened above was that I changed PS1 to no longer include the\t escape sequence
(added in a previous section), sothe time was no longer a part of the prompt. Then I used
date+%H%M to display the time in a format I like better. But itappears on a different line
than the prompt. Tidying this up usingecho -n ... as shown below works with Bash 2.0+,
butappears not to work with Bash 1.14.7: apparently the prompt is drawn in adifferent way,
and the following method results in overlapping text.

2156
[giles@nikola:~] PROMPT_COMMAND="echo -n [$(date +%H%M)]"
[2156][giles@nikola:~]$
[2156][giles@nikola:~]$ d
bin mail
[2157][giles@nikola:~]$ unset PROMPT_COMMAND
[giles@nikola:~]

echo -n ... controls the output of thedate command and suppresses the trailing
newline,allowing the prompt to appear all on one line. At the end, I used theunset command
to remove thePROMPT_COMMAND environment variable.

External Commands in the Prompt

You can use the output of regular Linux commands directly in the prompt aswell. Obviously,
you don't want to insert a lot of material, or it willcreate a large prompt. You also want to use
a fast command, because it's going to be executed every time your prompt appearson the
screen, and delays in the appearance of your prompt while you'reworking can be very
annoying. (Unlike the previous example that thisclosely resembles, this does work with Bash
1.14.7.)

[21:58:33][giles@nikola:~]$ PS1="[\$(date +%H%M)][\u@\h:\w]\$ "
[2159][giles@nikola:~]$ ls
bin mail
[2200][giles@nikola:~]$

It's important to notice the backslash before the dollar sign of thecommand substitution.
Without it, the external command is executed exactlyonce: when the PS1 string is read into
the environment. For this prompt,that would mean that it would display the same time no
matter how long theprompt was used. The backslash protects the contents of $() from
immediateshell interpretation, so date is called every time a prompt is generated.

Linux comes with a lot of small utility programs likedate, grep, or wcthat allow you to
manipulate data. If you find yourself trying to createcomplex combinations of these programs
within a prompt, it may be easier tomake an alias, function, or shell script of your own, and
call it from theprompt. Escape sequences are often required in bash shell scripts toensure
that shell variables are expanded at the correct time (as seen abovewith the date command):
this is raised to another level within the promptPS1 line, and avoiding it by creating functions
is a good idea.

An example of a small shell script used within a prompt is given below:

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 13 of 49

#!/bin/bash
lsbytesum - sum the number of bytes in a directory listing
TotalBytes=0
for Bytes in $(ls -l | grep "^-" | awk '{ print $5 }')
do
 let TotalBytes=$TotalBytes+$Bytes
done
TotalMeg=$(echo -e "scale=3 \n$TotalBytes/1048576 \nquit" | bc)
echo -n "$TotalMeg"

I used to keep this as a function, it now lives as a shell script in my~/bin directory, which is on
my path. Used in a prompt:

[2158][giles@nikola:~]$ PS1="[\u@\h:\w (\$(lsbytesum) Mb)]\$ "
[giles@nikola:~ (0 Mb)]$ cd /bin
[giles@nikola:/bin (4.498 Mb)]$

What to Put in Your Prompt

You'll find I put username, machine name, time, and current directory namein most of my
prompts. With the exception of the time, these are verystandard items to find in a prompt,
and time is probably the next mostcommon addition. But what you include is entirely a
matter of personaltaste. Here is an interesting example to help give you ideas.

Dan's prompt is minimal but very effective, particularly for the way heworks.

[giles@nikola:~]$ PS1="\!,\l,\$?\$ "
1095,4,0$ non-command
bash: non-command: command not found
1096,4,127$

Dan doesn't like that having the current working directory can resize theprompt drastically as
you move through the directory tree, so he keepstrack of that in his head (or types "pwd").
He learned Unix with csh andtcsh, so he uses his command history extensively (something
many of usweaned on Bash do not do), so the first item in the prompt is the historynumber.
The second item is the tty number, an item that can be useful to"screen" users. The third
item is the exit value of the lastcommand/pipeline (note that this is rendered useless by any
commandexecuted within the prompt - you can work around that by capturing it toa variable
and playing it back, though). Finally, the "\$" is a dollarsign for a regular user, and switches
to a hash mark ("#") if the user isroot.

Chapter 5. Saving Complex Prompts

As the prompts you use become more complex, it becomes more and morecumbersome to
type them in at the prompt, and more practical to make theminto some sort of text file. I have
adopted the method used by theBashprompt package (discussed later in this document:
Chapter 8, The Bash Prompt Package), which is to put the primary commandsfor the prompt
in one file with the PS1 string in particular defined withina function of the same name as the
file itself. It's not the only way todo it, but it works well. Take the following example:

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 14 of 49

#!/bin/bash

function tonka {

Named "Tonka" because of the colour scheme

local WHITE="\[\033[1;37m\]"
local LIGHT_BLUE="\[\033[1;34m\]"
local YELLOW="\[\033[1;33m\]"
local NO_COLOUR="\[\033[0m\]"

case $TERM in
 xterm*|rxvt*)
 TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 TITLEBAR=""
 ;;
esac

PS1="$TITLEBAR\
$YELLOW-$LIGHT_BLUE-(\
$YELLOW\u$LIGHT_BLUE@$YELLOW\h\
$LIGHT_BLUE)-(\
$YELLOW\$PWD\
$LIGHT_BLUE)-$YELLOW-\
\n\
$YELLOW-$LIGHT_BLUE-(\
$YELLOW\$(date +%H%M)$LIGHT_BLUE:$YELLOW\$(date \"+%a,%d %b %y\")\
$LIGHT_BLUE:$WHITE\\$ $LIGHT_BLUE)-$YELLOW-$NO_COLOUR "

PS2="$LIGHT_BLUE-$YELLOW-$YELLOW-$NO_COLOUR "

}
You can work with it as follows:

[giles@nikola:/bin (4.498 Mb)]$ cd
[giles@nikola:~ (0 Mb)]$ vim tonka
...
[giles@nikola:~ (0 Mb)]$ source tonka
[giles@nikola:~ (0 Mb)]$ tonka
[giles@nikola:~ (0 Mb)]$ unset tonka

Move to the directory where you want to save the prompt
Edit the prompt file with your preferred editor
Enter the prompt text given above as "tonka"
Read the prompt function into the environment
Execute the prompt function
Optionally, unclutter your environment by unsetting the function

Chapter 6. ANSI Escape Sequences: Colours and Cursor
Movement

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 15 of 49

Table of Contents
ColoursCursor MovementXterm Title Bar ManipulationsXterm Title Bars and ScreenColours
and Cursor Movement With tput

Colours

As mentioned before, non-printing escape sequences have to be enclosed in\[\033[and \].
For colour escape sequences, they should also be followed by a lowercase m.

If you try out the following prompts in an xterm and find that you aren'tseeing the colours
named, check out your ~/.Xdefaults file (andpossibly its bretheren) for lines like
XTerm*Foreground: BlanchedAlmond.This can be commented out by placing an exclamation
mark ("!") in front ofit. Of course, this will also be dependent on what terminal emulatoryou're
using. This is the likeliest place that your term foregroundcolours would be overridden.

To include blue text in the prompt:

PS1="\[\033[34m\][\$(date +%H%M)][\u@\h:\w]$ "

The problem with this prompt is that the blue colour that starts with the34 colour code is
never switched back to the regular colour, so any textyou type after the prompt is still in the
colour of the prompt. This isalso a dark shade of blue, so combining it with thebold code
might help:

PS1="\[\033[1;34m\][\$(date +%H%M)][\u@\h:\w]$\[\033[0m\] "

The prompt is now in light blue, and it ends by switching the colour back to nothing (whatever
foreground colour you had previously).

Here are the rest of the colour equivalences:

Black 0;30 Dark Gray 1;30
Blue 0;34 Light Blue 1;34
Green 0;32 Light Green 1;32
Cyan 0;36 Light Cyan 1;36
Red 0;31 Light Red 1;31
Purple 0;35 Light Purple 1;35
Brown 0;33 Yellow 1;33
Light Gray 0;37 White 1;37

Daniel Dui (ddui@iee.org) points out that to be strictly accurate, we mustmention that the list
above is for colours at the console. In an xterm,the code 1;31 isn't "Light Red," but "Bold
Red." This is true of all the colours.

You can also set background colours by using 44 for Blue background, 41 fora Red
background, etc. There are no bold background colours. Combinationscan be used, like
Light Red text on a Blue background:\[\033[44;1;31m\], although setting the colours
separately seems to work better (ie. \[\033[44m\]\[\033[1;31m\]). Other codesavailable
include 4: Underscore, 5: Blink, 7: Inverse, and 8: Concealed.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 16 of 49

Note
Many people (myself included) object strongly to the"blink" attribute because it's extremely
distracting and irritating. Fortunately, it doesn't work in any terminal emulatorsthat I'm aware
of - but it will still work on the console.

Note
If you were wondering (as I did) "What use is a 'Concealed' attribute?!" -I saw it used in an
example shell script (not a prompt) to allow someone totype in a password without it being
echoed to the screen. However, thisattribute doesn't seem to be honoured by many terms
other than "Xterm."

Based on a prompt called "elite2" in the Bashprompt package (which Ihave modified to work
better on a standard console, rather than with thespecial xterm fonts required to view the
original properly), this is aprompt I've used a lot:

function elite
{

local GRAY="\[\033[1;30m\]"
local LIGHT_GRAY="\[\033[0;37m\]"
local CYAN="\[\033[0;36m\]"
local LIGHT_CYAN="\[\033[1;36m\]"
local NO_COLOUR="\[\033[0m\]"

case $TERM in
 xterm*|rxvt*)
 local TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 local TITLEBAR=""
 ;;
esac

local temp=$(tty)
local GRAD1=${temp:5}
PS1="$TITLEBAR\
$GRAY-$CYAN-$LIGHT_CYAN(\
$CYAN\u$GRAY@$CYAN\h\
$LIGHT_CYAN)$CYAN-$LIGHT_CYAN(\
$CYAN\#$GRAY/$CYAN$GRAD1\
$LIGHT_CYAN)$CYAN-$LIGHT_CYAN(\
$CYAN\$(date +%H%M)$GRAY/$CYAN\$(date +%d-%b-%y)\
$LIGHT_CYAN)$CYAN-$GRAY-\
$LIGHT_GRAY\n\
$GRAY-$CYAN-$LIGHT_CYAN(\
$CYAN\$$GRAY:$CYAN\w\
$LIGHT_CYAN)$CYAN-$GRAY-$LIGHT_GRAY "
PS2="$LIGHT_CYAN-$CYAN-$GRAY-$NO_COLOUR "
}

I define the colours as temporary shell variables in the name ofreadability. It's easier to work
with. The "GRAD1" variable is a check todetermine what terminal you're on. Like the test to
determine if you'reworking in an Xterm, it only needs to be done once. The prompt you
seelook like this, except in colour:

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 17 of 49

--(giles@gcsu202014)-(30/pts/6)-(0816/01-Aug-01)--
--($:~/tmp)--

To help myself remember what colours are available, I wrote a script thatoutput all the
colours to the screen. Daniel Crisman has supplied a muchnicer version which I include
below:

#!/bin/bash
#
This file echoes a bunch of color codes to the
terminal to demonstrate what's available. Each
line is the color code of one forground color,
out of 17 (default + 16 escapes), followed by a
test use of that color on all nine background
colors (default + 8 escapes).
#

T='gYw' # The test text

echo -e "\n 40m 41m 42m 43m\
 44m 45m 46m 47m";

for FGs in ' m' ' 1m' ' 30m' '1;30m' ' 31m' '1;31m' ' 32m' \
 '1;32m' ' 33m' '1;33m' ' 34m' '1;34m' ' 35m' '1;35m' \
 ' 36m' '1;36m' ' 37m' '1;37m';
 do FG=${FGs// /}
 echo -en " $FGs \033[$FG $T "
 for BG in 40m 41m 42m 43m 44m 45m 46m 47m;
 do echo -en "$EINS \033[$FG\033[$BG $T \033[0m";
 done
 echo;
done
echo

Cursor Movement

ANSI escape sequences allow you to move the cursor around the screen atwill. This is more
useful for full screen user interfaces generated byshell scripts, but can also be used in
prompts. The movement escapesequences are as follows:

- Position the Cursor:
 \033[>L>;>C>H
 Or
 \033[>L>;>C>f
 puts the cursor at line L and column C.
- Move the cursor up N lines:
 \033[>N>A
- Move the cursor down N lines:
 \033[>N>B
- Move the cursor forward N columns:
 \033[>N>C
- Move the cursor backward N columns:
 \033[>N>D

- Clear the screen, move to (0,0):
 \033[2J
- Erase to end of line:
 \033[K

- Save cursor position:
 \033[s
- Restore cursor position:
 \033[u

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 18 of 49

The latter two codes are NOT honoured by many terminal emulators. The onlyones that I'm
aware of that do are xterm and nxterm - even though themajority of terminal emulators are
based on xterm code. As far as I cantell, rxvt, kvt, xiterm, and Eterm do not support them.
They are supportedon the console.

Try putting in the following line of code at the prompt (it's a littleclearer what it does if the
prompt is several lines down the terminal whenyou put this in): echo -en "\033[7A\033[1;35m
BASH \033[7B\033[6D" This should move the cursor seven lines up screen, print the word"
BASH ", and then return to where itstarted to produce a normal prompt. This isn't a prompt:
it's just ademonstration of moving the cursor on screen, using colour to emphasizewhat has
been done.

Save this in a file called "clock":

#!/bin/bash

function prompt_command {
let prompt_x=$COLUMNS-5
}

PROMPT_COMMAND=prompt_command

function clock {
local BLUE="\[\033[0;34m\]"
local RED="\[\033[0;31m\]"
local LIGHT_RED="\[\033[1;31m\]"
local WHITE="\[\033[1;37m\]"
local NO_COLOUR="\[\033[0m\]"
case $TERM in
 xterm*)
 TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 TITLEBAR=""
 ;;
esac

PS1="${TITLEBAR}\
\[\033[s\033[1;\$(echo -n \${prompt_x})H\]\
$BLUE[$LIGHT_RED\$(date +%H%M)$BLUE]\[\033[u\033[1A\]
$BLUE[$LIGHT_RED\u@\h:\w$BLUE]\
$WHITE\$$NO_COLOUR "
PS2='> '
PS4='+ '
}

This prompt is fairly plain, except that it keeps a 24 hour clock in theupper right corner of the
terminal (even if the terminal is resized). Thiswill NOT work on the terminal emulators that I
mentioned that don't acceptthe save and restore cursor position codes. If you try to run this
promptin any of those terminal emulators, the clock will appear correctly, butthe prompt will
be trapped on the second line of the terminal.

See also the section called "The Elegant Useless Clock Prompt" for amore extensive use of
these codes.

Xterm Title Bar Manipulations

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 19 of 49

I'm not sure that these escape sequences strictly qualify as "ANSI EscapeSequences," but in
practice their use is almost identical so I've includedthem in this chapter.

Non-printing escape sequences can be used to produce interesting effects inprompts. To
use these escape sequences, you need to enclose them in\[and \] (as discussed inthe
section called "Non-Printing Characters in Prompts", telling Bash to ignore this materialwhile
calculating the size of the prompt. Failing to include thesedelimiters results in line editing
code placing the cursor incorrectlybecause it doesn't know the actual size of the prompt.
Escape sequencesmust also be preceded by \033[in Bash prior toversion 2, or by either
\033[or\e[in later versions.

If you try to change the title bar of your Xterm with your promptwhen you're at the console,
you'll produce garbage in your prompt.To avoid this, test the TERM environment variable to
tell if your promptis going to be in an Xterm.

function proml
{
case $TERM in
 xterm*)
 local TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 local TITLEBAR=''
 ;;
esac

PS1="${TITLEBAR}\
[\$(date +%H%M)]\
[\u@\h:\w]\
\$ "
PS2='> '
PS4='+ '
}

This is a function that can be incorporated into~/.bashrc. Thefunction name could then be
called to execute the function. The function,like the PS1 string, is stored in the environment.
Once the PS1 string isset by the function, you can remove the function from the environment
withunset proml. Since the prompt can't change from being in an Xtermto being at the
console, the TERM variable isn't tested every time theprompt is generated. I used
continuation markers (backslashes) in thedefinition of the prompt, to allow it to be continued
on multiple lines.This improves readability, making it easier to modify and debug.

The first step in creating this prompt is to test if the shell we'restarting is an xterm or not: if it
is, the shell variable (${TITLEBAR}) isdefined. It consists of the appropriate escape
sequences, and\u@\h:\w, which puts>user>@>machine>:>working directory>
in the Xterm titlebar. This is particularly useful with minimized Xterms, making them
morerapidly identifiable. The other material in this prompt should be familiarfrom previous
prompts we've created.

The only drawback to manipulating the Xterm title bar like this occurswhen you log into a
system on which you haven't set up the title bar hack:the Xterm will continue to show the
information from the previous systemthat had the title bar hack in place.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 20 of 49

A suggestion from Charles Lepple (>clepple at negativezero dotorg>) on setting the
window title of the Xterm and the title of thecorresponding icon separately. He uses this
under WindowMaker because thetitle that's appropriate for an Xterm is usually too long for a
64x64 icon."\[\e]1;icon-title\007\e]2;main-title\007\]". He says to set this in theprompt
command because â€œI tried putting the string in PS1, but itcauses flickering under some
window managers because it results in settingthe prompt multiple times when you are editing
a multi-line command (atleast under bash 1.4.x -- and I was too lazy to fully explore the
reasonsbehind it).â€• I had no trouble with it in the PS1 string, but didn'tuse any multi-line
commands. He also points out that it works under xterm,xwsh, and dtterm, but not
gnome-terminal (which uses only the main title).I also found it to work with rxvt, but not kterm.

Xterm Title Bars and Screen

 Non-screen users should skip this section. Of course, screen is an awesome program
and what you should really do is rush out and find out what screen is - if you've read this far
in the HOWTO, you're enough of a Command Line Interface Junkie that you need to know.

 If you use screen in Xterms and you want to manipulate the title bar, your life may just
have become a bit more complicated ... Screen can, but doesn't automatically, treat the
Xterm title bar as a hardstatus line (whatever that means, but it's where we put our Xterm
title). If you're a RedHat user, you'll probably find the following line in your ~/.screenrc:

 termcapinfo xterm 'hs:ts=\E]2;:fs=\007:ds=\E]2;screen\007'

 If that line isn't in there, you should put it in. This allows the titlebar manipulations in the
previous section to work under Xterm. But I found they failed when I used rxvt. I e-mailed
a question about this to the screen maintainers, and Michael Schroeder (one of those good
people labouring behind the scenes to make free Unix/Linux software as great as it is)
told me to add the following to my ~/.screenrc:

 termcapinfo rxvt 'hs:ts=\E]2;:fs=\007:ds=\E]2;screen\007'

 I don't know if this will work for other Xterm variants, but since the two lines are
functionally identical except for the name of the Xterm type, perhaps ... I leave this as an
exercise for the reader. It did fix my problem, although I haven't researched further to see
if it interferes with the icon-titlebar naming distinction.

Colours and Cursor Movement With tput

As with so many things in Unix, there is more than one way to achieve thesame ends. A
utility called tput can also be used to move the cursor around the screen, get back
information about the status of theterminal, or set colours. man tput doesn't go into much
detail about the available commands, but Emilio Lopes e-mailed me to point out that man
terminfo will give you ahuge list of capabilities, many of which are deviceindependent, and
therefore better than the escape sequences previously mentioned. He suggested that I
rewrite all the examples using tput for this reason. He is correct that I should, butI've had
some trouble controlling it and getting it to do everything I want it to. However, I did rewrite
one prompt which you can see as an example:the section called "The Floating Clock
Prompt".

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 21 of 49

Here is a list of tput capabilities that I have found useful:
tput Colour Capabilities
tput setab [1-7]
Set a background colour using ANSI escape
tput setb [1-7]
Set a background colour
tput setaf [1-7]
Set a foreground colour using ANSI escape
tput setf [1-7]
Set a foreground colour

tput Text Mode Capabilities
tput bold
Set bold mode
tput dim
turn on half-bright mode
tput smul
begin underline mode
tput rmul
exit underline mode
tput rev
Turn on reverse mode
tput smso
Enter standout mode (bold on rxvt)
tput rmso
Exit standout mode
tput sgr0
Turn off all attributes (doesn't work quite as expected)

tput Cursor Movement Capabilities
tput cup Y X
Move cursor to screen location X,Y (top left is 0,0)
tput sc
Save the cursor position
tput rc
Restore the cursor position
tput lines
Output the number of lines of the terminal
tput cols
Output the number of columns of the terminal
tput cub N
Move N characters left
tput cuf N
Move N characters right
tput cub1
move left one space
tput cuf1

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 22 of 49

non-destructive space (move right one space)
tput ll
last line, first column (if no cup)
tput cuu1
up one line

tput Clear and Insert Capabilities
tput ech N
Erase N characters
tput clear
clear screen and home cursor
tput el1
Clear to beginning of line
tput el
clear to end of line
tput ed
clear to end of screen
tput ich N
insert N characters (moves rest of line forward!)
tput il N
insert N lines

This is by no means a complete list of what terminfo andtput allow, in fact it's only the
beginning.man tput and man terminfo if you wantto know more.

Chapter 7. Special Characters: Octal Escape Sequences

Outside of the characters that you can type on your keyboard, there are alot of other
characters you can print on your screen. I've created ascript to allow you to check out what
the font you're using has availablefor you. The main command you need to use to utilize
these characters is"echo -e". The "-e" switch tells echo to enable interpretation
ofbackslash-escaped characters. What you see when you look at octal 200-400will be very
different with a VGA font from what you will see with astandard Linux font. Be warned that
some of these escape sequences haveodd effects on your terminal, and I haven't tried to
prevent them fromdoing whatever they do. The linedraw and block characters that are used
heavily by the Bashprompt project are between octal 260 and 337 in the VGAfonts.

#!/bin/bash

Script: escgen

function usage {
 echo -e "\033[1;34mescgen\033[0m >lower_octal_value>
[>higher_octal_value>]"
 echo " Octal escape sequence generator: print all octal escape sequences"
 echo " between the lower value and the upper value. If a second value"
 echo " isn't supplied, print eight characters."
 echo " 1998 - Giles Orr, no warranty."
 exit 1
}

if ["$#" -eq "0"]
then
 echo -e "\033[1;31mPlease supply one or two values.\033[0m"
 usage
fi
let lower_val=${1}
if ["$#" -eq "1"]
then
 # If they don't supply a closing value, give them eight characters.
 upper_val=$(echo -e "obase=8 \n ibase=8 \n $lower_val+10 \n quit" | bc)
else
 let upper_val=${2}
fi
if ["$#" -gt "2"]
then
 echo -e "\033[1;31mPlease supply two values.\033[0m"
 echo
 usage
fi
if ["${lower_val}" -gt "${upper_val}"]
then
 echo -e "\033[1;31m${lower_val} is larger than ${upper_val}."
 echo
 usage
fi
if ["${upper_val}" -gt "777"]
 then
 echo -e "\033[1;31mValues cannot exceed 777.\033[0m"
 echo
 usage
fi

let i=$lower_val
let line_count=1
let limit=$upper_val
while ["$i" -lt "$limit"]
do
 octal_escape="\\$i"
 echo -en "$i:'$octal_escape' "
 if ["$line_count" -gt "7"]
 then
 echo
 # Put a hard return in.
 let line_count=0
 fi
 let i=$(echo -e "obase=8 \n ibase=8 \n $i+1 \n quit" | bc)
 let line_count=$line_count+1
done
echo

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 23 of 49

You can also use xfd to display all the characters in an X font, with the command xfd -fn
>fontname>. Clicking on any givencharacter will give you lots of information about that
character, includingits octal value. The script given above will be useful on the console, andif
you aren't sure of the current font name.

Chapter 8. The Bash Prompt Package

Table of Contents
AvailabilityXterm FontsChanging the Xterm FontLine Draw Characters without VGA Fonts

Availability

The Bash Prompt package was available at http://bash.current.nu/, and is thework of several
people, co-ordinated by Rob Current (aka BadLandZ). Thesite was down in July 2001, but
Rob Current assures me it will be back upsoon. The package is in beta, but offers a simple
way of using multipleprompts (or themes), allowing you to set prompts for login shells, and
forsubshells (ie. putting PS1 strings in ~/.bash_profileand ~/.bashrc). Most of the themes use
the extendedVGA character set, so they look bad unless they're used with VGA fonts(which
aren't the default on most systems). Little work has been done onthis project recently: I hope
there's some more progress.

Xterm Fonts

To use some of the most attractive prompts in the Bash Prompt package, youneed to get and
install fonts that support the character sets expected bythe prompts. These are "VGA Fonts,"
which support different character setsthan regular Xterm fonts. Standard Xterm fonts support
an extendedalphabet, including a lot of letters with accents. In VGA fonts, thismaterial is
replaced by graphical characters - blocks, dots, lines. Iasked for an explanation of this
difference, and SÃ©rgio Vale e Pace(space@gold.com.br) wrote me:

I love computer history so here goes:
When IBM designed the first PC they needed some character codes to use, sothey got the
ASCII character table (128 numbers, letters, and somepunctuation) and to fill a byte
addressed table they added 128 morecharacters. Since the PC was designed to be a home
computer, they fill theremaining 128 characters with dots, lines, points, etc, to be able to
doborders, and grayscale effects (remember that we are talking about 2 colorgraphics).

Time passes, PCs become a standard, IBM creates more powerful systems andthe VGA
standard is born, along with 256 colour graphics, and IBM continuesto include their
IBM-ASCII characters table.

More time passes, IBM has lost their leadership in the PC market, and theOS authors dicover
that there are other languages in the world that usenon-english characters, so they add
international alphabet support in theirsystems. Since we now have bright and colorful
screens, we can trash thedots, lines, etc. and use their space for accented characters and
somegreek letters, which you'll see in Linux.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 24 of 49

Changing the Xterm Font

Getting and installing these fonts is a somewhat involved process. First,retrieve the font(s).
Next, ensure they're .pcf or .pcf.gz files. Ifthey're .bdf files, investigate the "bdftopcf"
command (ie. read the manpage). Drop the .pcf or .pcf.gz files into the dir (this is the correct
directory for RedHat5.1 through 7.1, it may be different on other distributions). cd to that
directory, and run mkfontdir.Then run xset fp rehash and/or restart your X font server,
whicheverapplies to your situation. Sometimes it's a good idea to go into thefonts.alias file in
the same directory, and create shorter alias names for the fonts.

To use the new fonts, you start your Xterm program of choice with theappropriate command
to your Xterm, which can be found either in the manpage or by using the "--help" parameter
on the command line. Popular termswould be used as follows:

xterm -font >fontname>

OR

xterm -fn >fontname> -fb >fontname-bold>
Eterm -F >fontname>
rxvt -fn >fontname>

VGA fonts are available from Stumpy's ANSI Fonts page at
http://home.earthlink.net/~us5zahns/enl/ansifont.html (which I haveborrowed from
extensively while writing this).

Line Draw Characters without VGA Fonts

Xterm and rxvt can be switched into line-draw mode on the fly with theappropriate escape
sequence. You'll need to switch back after you'veoutput the characters you wanted or any
text following it will be garbled.Prompts based on these output codes don't work on the
console, insteadproducing the text equivalents.

To start a sequence of line draw characters, use an echo-e and the \033(0 escape sequence.
 Most ofthe characters worth using are in the range lower case "a" through "z".Terminate the
string with another escape sequence,\033(B .

The best method I've found for testing this is shown in the image below:use the escgen script
mentioned earlier in the HOWTO toshow the 100 to 200 octal range, echo the first
escapesequence, run the escgen script for the same range, andecho the closing escape
sequence. The image also showshow to use this in a prompt.

image:Line Draw in RXVT / /data/20/rxvt-line-draw.jpg (null)

Using escape sequences in RXVT (also works in Xterm and RXVT derivativeslike aterm,
which is used here) to produce line draw characters. The"escgen" script used above is given
earlier in the HOWTO.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 25 of 49

Chapter 9. Loading a Different Prompt

Table of Contents
Loading a Different Prompt, LaterLoading a Different Prompt, ImmediatelyLoading Different
Prompts in Different X Terms

Loading a Different Prompt, Later

The explanations in this HOWTO have shown how to make PS1 environmentvariables, or
how to incorporate those PS1 and PS2 strings into functionsthat could be called by ~/.bashrc
or as a theme by the bashpromptpackage.

Using the bashprompt package, you would type bashprompt-i to see a list of available
themes. To set the prompt infuture login shells (primarily the console, but also telnet and
Xterms,depending on how your Xterms are set up), you would typebashprompt -l
themename.bashprompt then modifies your~/.bash_profile to call the requested theme
whenit starts. To set the prompt in future subshells (usually Xterms, rxvt,etc.), you type
bashprompt -s themename, andbashprompt modifies your ~/.bashrc file to callthe
appropriate theme at startup.

See also the section called "Setting the PS Strings Permanently". forJohan Kullstam's note
regarding the importance of putting the PS?strings in ~/.bashrc .

Loading a Different Prompt, Immediately

You can change the prompt in your current terminal (using the example"elite" function above)
by typing source elitefollowed by elite (assuming that the elitefunction file is the working
directory). This is somewhat cumbersome, andleaves you with an extra function (elite) in
your environment space - ifyou want to clean up the environment, you would have to
typeunset elite as well. This would seem like anideal candidate for a small shell script, but a
script doesn't work herebecause the script cannot change the environment of your current
shell: itcan only change the environment of the subshell it runs in. As soon as thescript
stops, the subshell goes away, and the changes the script made tothe environment are gone.
 What can change environmentvariables of your current shell are environment functions. The
bashpromptpackage puts a function called callbashprompt into yourenvironment, and, while
they don't document it, it can be called to loadany bashprompt theme on the fly. It looks in
the theme directory itinstalled (the theme you're calling has to be there), sources the
functionyou asked for, loads the function, and then unsets the function, thuskeeping your
environment uncluttered. callbashpromptwasn't intended to be used this way, and has no
error checking, but if youkeep that in mind, it works quite well.

Loading Different Prompts in Different X Terms

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 26 of 49

If you have a specific prompt to go with a particular project, or somereason to load different
prompts at different times, you can use multiplebashrc files instead of always using your
~/.bashrcfile. The Bash command is something like bash --rcfile
/home/giles/.bashprompt/bashrc/bashrcdan, which will start anew version of Bash in your
current terminal. To use this in combinationwith a Window Manager menuing system, use a
command like rxvt -ebash --rcfile /home/giles/.bashprompt/bashrc/bashrcdan. Theexact
command you use will be dependent on the syntax of your X term ofchoice and the location
of the bashrc file you're using.

Chapter 10. Loading Prompt Colours Dynamically

Table of Contents
A "Proof of Concept" Example

A "Proof of Concept" Example

This is a "proof of concept" more than an attractive prompt: changing colours within the
prompt dynamically. In this example, the colour of thehost name changes depending on the
load (as a warning).

#!/bin/bash
"hostloadcolour" - 17 October 98, by Giles
#
The idea here is to change the colour of the host name in the prompt,
depending on a threshold load value.

THRESHOLD_LOAD is the value of the one minute load (multiplied
by one hundred) at which you want
the prompt to change from COLOUR_LOW to COLOUR_HIGH
THRESHOLD_LOAD=200
COLOUR_LOW='1;34'
 # light blue
COLOUR_HIGH='1;31'
 # light red

function prompt_command {
ONE=$(uptime | sed -e "s/.*load average: \(.*\...\), \(.*\...\), \(.*\...\)/\1/"
-e "s/ //g")
Apparently, "scale" in bc doesn't apply to multiplication, but does
apply to division.
ONEHUNDRED=$(echo -e "scale=0 \n $ONE/0.01 \nquit \n" | bc)
if [$ONEHUNDRED -gt $THRESHOLD_LOAD]
then
 HOST_COLOUR=$COLOUR_HIGH
	# Light Red
else
 HOST_COLOUR=$COLOUR_LOW
	# Light Blue
fi
}

function hostloadcolour {

PROMPT_COMMAND=prompt_command
PS1="[$(date +%H%M)][\u@\[\033[\$(echo -n \$HOST_COLOUR)m\]\h\[\033[0m\]:\w]$ "
}

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 27 of 49

Using your favorite editor, save this to a file named "hostloadcolour". Ifyou have the
Bashprompt package installed, this will work as a theme. If youdon't, type source
hostloadcolour and then hostloadcolour.Either way, "prompt_command" becomes a function
in your environment.If you examine the code, you will notice that the colours
($COLOUR_HIGH and $COLOUR_LOW) are set using only a partial colour code, ie. "1;34"
instead of"\[\033[1;34m\]", which I would have preferred. I have been unable to getit to work
with the complete code. Please let me know if you manage this.

Chapter 11. Prompt Code Snippets

Table of Contents
Built-in Escape SequencesDate and TimeCounting Files in the Current DirectoryTotal Bytes
in the Current DirectoryChecking the Current TTYStopped Jobs CountLoadUptimeNumber of
ProcessesControlling the Size and Appearance of $PWDLaptop PowerHaving the Prompt
Ignored on Cut and PasteNew MailPrompt Beeps After Long-Running Commands

This section shows how to put various pieces of information into the Bashprompt. There are
an infinite number of things that could be put in yourprompt. Feel free to send me examples,
I'll try to include what I thinkwill be most widely used. If you have an alternate way to retrieve
a pieceof information here, and feel your method is more efficient, please contactme. It's
easy to write bad code, I do it often, but it's great to writeelegant code, and a pleasure to
read it. I manage it every once in awhile, and would love to have more of it to put in here.

To incorporate shell code in prompts, it has to be escaped. Usually, thiswill mean putting it
inside \$(>command>) sothat the output of command is substituted each timethe prompt
is generated.

Please keep in mind that I develop and test this code on a single user900 MHz Athlon with
256 meg of RAM, so the delay generated by these codesnippets doesn't usually mean much
to me. To help with this, I recentlyassembled a 25 MHz 486 SX with 16 meg of RAM, and
you will see the outputof the "time" command for each snippet to indicate how much of a
delay itcauses on a slower machine.

Built-in Escape Sequences

See the section called "Bash Prompt Escape Sequences" for a completelist of built-in escape
sequences. This list is taken directly from theBash man page, so you can also look there.

Date and Time

If you don't like the built-ins for date and time, extracting the sameinformation from the date
command is relativelyeasy. Examples already seen in this HOWTO include date
+%H%M,which will put in the hour in 24 hour format, and the minute. date "+%A, %d %B
%Y" will give something like "Sunday, 06 June 1999". For a full listof the interpreted
sequences, type date --help or man date.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 28 of 49

Relative speed: "date ..." takes about 0.12 seconds on an unloaded 486SX25.

Counting Files in the Current Directory

To determine how many files there are in the current directory, put inls -1 | wc -l. This uses
wcto do a count of the number of lines (-l) in the output ofls -1. It doesn't count dotfiles.
Please note thatls -l (that's an "L" rather than a "1" as in theprevious examples) which I used
in previous versions of this HOWTO willactually give you a file count one greater than the
actual count. Thanksto Kam Nejad for this point.

If you want to count only files and NOT include symbolic links (just anexample of what else
you could do), you could use ls -l | grep-v ^l | wc -l (that's an "L" not a "1" this time, we want
a"long" listing here). grep checks for any linebeginning with "l" (indicating a link), and
discards that line (-v).

Relative speed: "ls -1 /usr/bin/ | wc -l" takes about 1.03 seconds on an unloaded 486SX25
(/usr/bin/ on this machine has 355 files). "ls -l/usr/bin/ | grep -v ^l | wc -l" takes about 1.19
seconds.

Total Bytes in the Current Directory

If you want to know how much space the contents of the current directorytake up, you can
use something like the following:

let TotalBytes=0

for Bytes in $(ls -l | grep "^-" | awk '{ print $5 }')
do
 let TotalBytes=$TotalBytes+$Bytes
done

The if...fi's give a more specific output in byte, kilobyte, megabyte,
and gigabyte

if [$TotalBytes -lt 1024]; then
 TotalSize=$(echo -e "scale=3 \n$TotalBytes \nquit" | bc)
 suffix="b"
elif [$TotalBytes -lt 1048576]; then
 TotalSize=$(echo -e "scale=3 \n$TotalBytes/1024 \nquit" | bc)
 suffix="kb"
elif [$TotalBytes -lt 1073741824]; then
 TotalSize=$(echo -e "scale=3 \n$TotalBytes/1048576 \nquit" | bc)
 suffix="Mb"
else
 TotalSize=$(echo -e "scale=3 \n$TotalBytes/1073741824 \nquit" | bc)
 suffix="Gb"
fi

echo -n "${TotalSize}${suffix}"

Code courtesy of me, Sam Schmit (>id at pt dot lu>), and Sam's uncle Jean-Paul, who
ironed out a fairly major bug in my original code, and just generally cleaned it up.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 29 of 49

Note that you could also just use ls -l | grep ^total | awk '{print $2 }' because ls -l prints out
aline at the beginning that is the approximate size of the directory inkilobytes - although for
reasons unknown to me, it seems to be lessaccurate (but obviously faster) than the above
script.

Relative speed: this process takes between 3.2 and 5.8 seconds in /usr/bin/(14.7 meg in the
directory) on an unloaded 486SX25, depending on how muchof the information is cached (if
you use this in a prompt, more or less ofit will be cached depending how long you work in the
directory).

Checking the Current TTY

The tty command returns the filename of the terminal connected to standard input. This
comes in two formats on the Linux systems I have used, either "/dev/tty4" or "/dev/pts/2".
I've usedseveral methods over time, but the simplest I've found so far (probablyboth Linux-
and Bash-2.x specific) is temp=$(tty) ; echo${temp:5}. This removes the first five characters
of thetty output, in this case "/dev/".

Previously, I used tty | sed -e "s:/dev/::", whichremoves the leading "/dev/". Older systems (in
my experience, RedHatthrough 5.2) returned only filenames in the "/dev/tty4" format, so I
usedtty | sed -e "s/.*tty\(.*\)/\1/".

An alternative method: ps ax | grep $$ | awk '{ print $2 }'.
Relative speed: the ${temp:5} method takes about 0.12 seconds on anunloaded 486SX25,
the sed-driven method takes about 0.19 seconds, theawk-driven method takes about 0.79
seconds.

Stopped Jobs Count

Torben Fjerdingstad (>tfj at fjerdingstad dot dk>) wrote totell me that he often stops jobs
and then forgets about them. He uses hisprompt to remind himself of stopped jobs.
Apparently this is fairlypopular, because as of Bash 2.04, there is a standard escape
sequence forjobs managed by the shell:

[giles@zinfandel]$ export PS1='\W[\j]\$ '
giles[0]$ man ls &
[1] 31899
giles[1]$ xman &
[2] 31907

[1]+ Stopped man ls
giles[2]$ jobs
[1]+ Stopped man ls
[2]- Running xman &
giles[2]$

Note that this shows both stopped and running jobs. At the console, youprobably want the
complete count, but in an xterm you're probably onlyinterested in the ones that are stopped.
To display only these, you coulduse something like the following:

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 30 of 49

[giles@zinfandel]$ function stoppedjobs {
-- jobs -s | wc -l | sed -e "s/ //g"
-- }
[giles@zinfandel]$ export PS1='\W[`stoppedjobs`]\$ '
giles[0]$ jobs
giles[0]$ man ls &
[1] 32212

[1]+ Stopped man ls
giles[0]$ man X &
[2] 32225

[2]+ Stopped man X
giles[2]$ jobs
[1]- Stopped man ls
[2]+ Stopped man X
giles[2]$ xman &
[3] 32246
giles[2]$ sleep 300 &
[4] 32255
giles[2]$ jobs
[1]- Stopped man ls
[2]+ Stopped man X
[3] Running xman &
[4] Running sleep 300 &

This doesn't always show the stopped job in the prompt that follows immediately after the
command is executed - it probably depends on whetherthe job is launched and put in the
background before jobsis run.

Note
There is a known bug in Bash 2.02 that causes the jobscommand (a shell builtin) to return
nothing to a pipe. If you try theabove under Bash 2.02, you will always get a "0" back
regardless of howmany jobs you have stopped. This problem is fixed in 2.03.

Relative speed: 'jobs -s | wc -l | sed -e "s/ //g" ' takes about 0.24seconds on an unloaded
486SX25.

Load

The output of uptime can be used to determine both thesystem load and uptime, but its
output is exceptionally difficult to parse.On a Linux system, this is made much easier to deal
with by the existenceof the /proc/ file system.cat /proc/loadavg will show you the one minute,
fiveminute, and fifteen minute load average, as well as a couple other numbersI don't know
the meaning of (anyone care to fill me in?).

Getting the load from /proc/loadavg is easy (thanks to Jerry Peek forreminding me of this
simple method): read one five fifteen rest> /proc/loadavg. Just print the value you want.

For those without the /proc/filesystem, you can use uptime | sed -e "s/.*load average: \(.*\...\),
\(.*\...\), \(.*\...\)/\1/" -e "s/ //g" and replace "\1" with "\2" or "\3" depending if you want the one
minute, five minute, or fifteen minute load average. This is a remarkablyugly regular
expression: send suggestions if you have a better one.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 31 of 49

Relative speed: 'uptime | sed -e "s/.*load average: \(.*\...\), \(.*\...\),\(.*\...\)/\1/" -e "s/ //g" '
takes about 0.21 seconds on an unloaded 486SX25.

Uptime

As with load, the data available through uptime is verydifficult to parse. Again, if you have
the /proc/ filesystem, take advantage of it. Iwrote the following code to output just the time
the system has been up:

#!/bin/bash
#
upt - show just the system uptime, days, hours, and minutes

let upSeconds="$(cat /proc/uptime) && echo ${temp%%.*})"
let secs=$((${upSeconds}%60))
let mins=$((${upSeconds}/60%60))
let hours=$((${upSeconds}/3600%24))
let days=$((${upSeconds}/86400))
if ["${days}" -ne "0"]
then
 echo -n "${days}d"
fi
echo -n "${hours}h${mins}m"

Output looks like "1h31m" if the system has been up less than a day, or"14d17h3m" if it has
been up more than a day. You can massage the outputto look the way you want it to. This
evolved after an e-mail discussionwith David Osolkowski, who gave me some ideas.

Before I wrote that script, I had a couple emails with David O, who saidâ€œme and a couple guys
got on irc and started hacking with sed andgot this: uptime | sed -e 's/.* \(.* days,\)\? \(.*:..,\)
.*/\1 \2/' -e's/,//g' -e 's/ days/d/' -e 's/ up //'. It's ugly, and doesn't use regex nearly as well as
it should, but itworks. It's pretty slow on a P75, though, so I removed it.â€•Considering how
much uptime output varies depending onhow long a system has been up, I was impressed
they managed as well as theydid. You can use this on systems without /proc/ filesystem, but
as he says, itmay be slow.

Relative speed: the "upt" script takes about 0.68 seconds on an unloaded486SX25 (half that
as a function). Contrary to David's guess, his use ofsed to parse the output of "uptime" takes
only 0.22 seconds.

Number of Processes

ps ax | wc -l | tr -d " " OR ps ax | wc -l | awk '{print $1}' OR ps ax | wc -l | sed -e "s: ::g".
Ineach case, tr or awk or sed is used to remove the undesirable whitespace.

Relative speed: any one of these variants takes about 0.9 seconds on anunloaded 486SX25.

Controlling the Size and Appearance of $PWD

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 32 of 49

Unix allows long file names, which can lead to the value of $PWD being verylong. Some
people (notably the default RedHat prompt) choose to use thebasename of the current
working directory (ie. "giles" if$PWD="/home/giles"). I like more info than that, but it's often
desirableto limit the length of the directory name, and it makes the most sense totruncate on
the left.

How many characters of the $PWD should be kept
local pwdmaxlen=30
Indicator that there has been directory truncation:
#trunc_symbol=">"
local trunc_symbol="..."
if [${#PWD} -gt $pwdmaxlen]
then
	local pwdoffset=$((${#PWD} - $pwdmaxlen))
	newPWD="${trunc_symbol}${PWD:$pwdoffset:$pwdmaxlen}"
else
	newPWD=${PWD}
fi

The above code can be executed as part of PROMPT_COMMAND, and theenvironment
variable generated (newPWD) can then be included in the prompt. Thanks to Alexander
Mikhailian>mikhailian at altern dot org> who rewrote the code to utilizenew Bash
functionality, thus speeding it up considerably.

Risto Juola (risto AT risto.net) wrote to say that he preferred to have the"~" in the $newPWD,
so he wrote another version:

pwd_length=20

DIR=`pwd`

echo $DIR | grep "^$HOME" >> /dev/null

if [$? -eq 0]
then
 CURRDIR=`echo $DIR | awk -F$HOME '{print $2}'`
 newPWD="~$CURRDIR"

 if [$(echo -n $newPWD | wc -c | tr -d " ") -gt $pwd_length]
 then
 newPWD="~/..$(echo -n $PWD | sed -e "s/.*\(.\{$pwd_length\}\)/\1/")"
 fi
elif ["$DIR" = "$HOME"]
then
 newPWD="~"
elif [$(echo -n $PWD | wc -c | tr -d " ") -gt $pwd_length]
then
 newPWD="..$(echo -n $PWD | sed -e "s/.*\(.\{$pwd_length\}\)/\1/")"
else
 newPWD="$(echo -n $PWD)"
fi
Relative speed: the first version takes about 0.45 seconds on an unloaded 486SX25. Risto's
version takes about 0.80 to 0.95 seconds. Thevariation in this case is due to whether or not
truncation is required.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 33 of 49

Laptop Power

If you have a laptop with APM installed, try the following PROMPT_COMMANDto create an
environment variable ${battery} you canadd to your prompt. This will indicate if AC power is
connected and percentage power remaining. AC power is indicated by a "^" (for on) and a"v"
(for off) before the percentage value.

function prompt_command {
	# As much of the response of the "apm" command as is
	# necessary to identify the given condition:
 NO_AC_MESG="AC off"
 AC_MESG="AC on"

 APMD_RESPONSE="$(apm)"
 case ${APMD_RESPONSE} in
 ${AC_MESG})
 ACstat="^"
 ;;
 ${NO_AC_MESG})
 ACstat="v"
 ;;
 esac

 battery="${temp##* }"
 battery="${ACstat}${battery}"
}

Having the Prompt Ignored on Cut and Paste

This one is weird but cool. Rory Toma >rory at corp dot webtv dotnet> wrote to suggest
a prompt like this: : rory@demon; . How is this useful? You can triple click on any
previouscommand (in Linux,anyway) to highlight the whole line, then paste that line in front
ofanother prompt and the stuff between the ":" and the """ is ignored,like so:

: rory@demon ; uptime
 5:15pm up 6 days, 23:04, 2 users, load average: 0.00, 0.00, 0.00
: rory@demon ; : rory@demon ; uptime
 5:15pm up 6 days, 23:04, 2 users, load average: 0.00, 0.00, 0.00

The prompt is a no-op, and if your PS2 is set to a space, multiple linescan be cut and pasted
as well.

New Mail

Several people have sent me methods for checking whether or not they hadnew e-mail.
Most of them relied on programs that aren't on every system.Then I received the following
code from Henrik Veenpere: cat $MAIL |grep -c ^Message-. This is simple andelegant, and I
like it.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 34 of 49

Prompt Beeps After Long-Running Commands

Robb Matzke (matzke at llnl dot gov) sent me this a long time ago (sorryRobb, should have
put it in sooner!). This prompt uses Perl and thebuiltin times command to determine if the
program thatjust finished running has used more than a certain amount of time.
Theassumption is that you might have changed desktops by then and notificationwould be
nice, so it rings a bell. I've tried to avoid using Perl becausethe overhead is fairly high, but
this is a good use for it.

I haven't tested this prompt myself. I like the idea though. Robbincludes instructions in the
comments.

#!/usr/bin/perl
require 5.003;
use strict;

###
prompt_bell -- execute arbitrary commands contingent upon CPU time
#
Copyright (C) 2000 Robb Matzke
#
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program; see the file COPYING. If not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.
#
Purpose:
#
This program is intended to be called each time a shell prompt is
displayed. It looks at current CPU times (user+system) for the shell and
its children, and if the CPU time is more than some user-specified amount
then user-specified commands are executed. The author uses it to provide
an audio indication of when a long-running command completes.
#
Usage:
#
The prompt_bell command takes two arguments: the name of a file
containing the latest CPU usage information for the shell and its
children, and some optional state information from the environment
variable $PROMPT_BELL_STATE.
#
The times file simply contains one or more times, zero or more to a line,
each of the form `#h#m#.#s' where `#' is a sequence of one or more
decimal digits and `#h' is the optional number of hours, `#m' is the
required number of minutes, and `#.#s' is the number of seconds and
fractions thereof. The total time is the sum of all the times in this
file. Example:
#
0m0.050s 0m0.060s
0m15.790s 0m0.220s
#
The output from this command is one or more semicolon-separated shell
commands which should be eval'd by the caller. If the difference between
the current CPU times and the previous CPU times (stored in environment
variable PROMPT_BELL_STATE) is more than $PROMPT_BELL_TIME seconds
(default 10) then the commands printed include the value of environment
variable PROMPT_BELL_CMD (default is "echo -ne '\a'").
#
Typical usage is:
eval "`prompt_bell $TIMES_FILE $PROMPT_BELL_STATE`"
#
and this command is usually part of the bash PROMPT_COMMAND. The author's
.bashrc contains the following:
#
PROMPT_BELL_TIME=15
PROMPT_BELL_CMD="echo -e 'done.\a'"
#
COMMAND_PROMPT='TIMES_FILE=/tmp/times.$$;
times >$TIMES_FILE;
eval "`prompt_bell $TIMES_FILE $PROMPT_BELL_STATE`";
/bin/rm -f $TIMES_FILE'
export PROMPT_BELL_TIME PROMPT_BELL_CMD COMMAND_PROMPT
#
Note: the output of `times' is stored in a temporary file to prevent it
from being executed in a subshell whose CPU times are always nearly zero.
#
##

Convert #h#m#s to seconds.
sub seconds {
 my($hms) = @_;
 my($h,$m,$s) = $hms =~ /^(?:(\d+)h)?(\d+)m(\d+\.\d+)s/;
 return $h*3600 + $m*60 + $s;
}

Obtain processor times in seconds
my $times_file = shift;
my $ptime_cur = 0;
open TIMES_FILE, $times_file or die "prompt_bell: $times_file: $!\n";
while (>TIMES_FILE>) {
 s/(?:(\d+)h)?(\d+)m(\d+(?:\.\d+)?)s/$ptime_cur+=$1*3600+$2*60+$3/eg;
}
close TIMES_FILE;

Obtain previous state to compute deltas.
my $ptime_prev = shift;

If the processor time was more than $PROMPT_BELL_TIME or 10 seconds
then beep.
my $beep;
my $limit = exists $ENV{PROMPT_BELL_TIME}?$ENV{PROMPT_BELL_TIME}:10;
if ($ptime_cur-$ptime_prev>$limit) {
 $beep = ";" . ($ENV{PROMPT_BELL_CMD} || "echo -ne '\\a'");
}

Generate the shell commands
print "PROMPT_BELL_STATE=$ptime_cur$beep\n";
exit 0;

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 35 of 49

Chapter 12. Example Prompts

Table of Contents
Examples on the WebA "Lightweight" PromptDan's PromptElite from Bashprompt ThemesA
"Power User" PromptPrompt Depending on Connection TypeA Prompt the Width of Your
TermThe Floating Clock PromptThe Elegant Useless Clock Prompt

Examples on the Web

Over time, many people have e-mailed me excellent examples, and I'vewritten some
interesting ones myself. There are too many to include here,so I have put all of the examples
together into some web pages which can beseen at http://www.gilesorr.com/bashprompt/.
Most of theexamples given here can also be seen on the web.

A "Lightweight" Prompt

function proml {
local BLUE="\[\033[0;34m\]"
local RED="\[\033[0;31m\]"
local LIGHT_RED="\[\033[1;31m\]"
local WHITE="\[\033[1;37m\]"
local NO_COLOUR="\[\033[0m\]"
case $TERM in
 xterm*|rxvt*)
 TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 TITLEBAR=""
 ;;
esac

PS1="${TITLEBAR}\
$BLUE[$RED\$(date +%H%M)$BLUE]\
$BLUE[$LIGHT_RED\u@\h:\w$BLUE]\
$WHITE\$$NO_COLOUR "
PS2='> '
PS4='+ '
}

image:[1745][giles@zinfandel:~/bin]$ / /data/20/proml.png (null)

The lightweight proml prompt, showing time, username, machinename, and working directory
in colour. It also modifies the title of the terminal.

Dan's Prompt

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 36 of 49

Dan was a coworker of mine at the university I work at for a while. Danused csh and tcsh for
a long time before moving to Bash, so he uses thehistory number a lot. He uses "screen" a
lot, and for that, it's helpful tohave the tty. The last part of his prompt is the return value of the
lastexecuted command. Dan doesn't like having the $PWD in his prompt because itmakes
the prompt grow and shrink too much.

#!/bin/bash
Dan's prompt looks like this:
543,p3,0$
#
PROMPT_COMMAND=""
function dan {
local cur_tty=$(temp=$(tty) ; echo ${temp:5});
PS1="\!,$cur_tty,\$?\$ "
}

image:
1004,pts/7,0$

 / /data/20/dan.png (null)

Dan's prompt: history number, tty number, return value of the last executedfunction.

Elite from Bashprompt Themes

Note that this requires a VGA font.

Created by KrON from windowmaker on IRC
Changed by Spidey 08/06
function elite {
PS1="\[\033[31m\]\332\304\[\033[34m\](\[\033[31m\]\u\[\033[34m\]@\[\033[31m\]\h\
\[\033[34m\])\[\033[31m\]-\[\033[34m\](\[\033[31m\]\$(date +%I:%M%P)\
\[\033[34m\]-:-\[\033[31m\]\$(date +%m)\[\033[34m\033[31m\]/\$(date +%d)\
\[\033[34m\])\[\033[31m\]\304-\[\033[34m]\\371\[\033[31m\]-\371\371\
\[\033[34m\]\372\n\[\033[31m\]\300\304\[\033[34m\](\[\033[31m\]\W\[\033[34m\])\
\[\033[31m\]\304\371\[\033[34m\]\372\[\033[00m\]"
PS2="> "
}

image:

 / /data/20/elite.png (null)

The elite prompt from the Bashprompt Themes.

A "Power User" Prompt

I actually did use this prompt for a while, but it results in noticeabledelays in the appearance
of the prompt on a single-user PII-400, so Iwouldn't recommend using it on a multi-user
P-100 or anything ... Arewrite using newer Bash functionality might help, but look atit for
ideas rather than as a practical prompt.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 37 of 49

#!/bin/bash
#--
POWER USER PROMPT "pprom2"
#--
#
Created August 98, Last Modified 9 November 98 by Giles
#
Problem: when load is going down, it says "1.35down-.08", get rid
of the negative

function prompt_command
{
Create TotalMeg variable: sum of visible file sizes in current directory
local TotalBytes=0
for Bytes in $(ls -l | grep "^-" | awk '{print $5}')
do
 let TotalBytes=$TotalBytes+$Bytes
done
TotalMeg=$(echo -e "scale=3 \nx=$TotalBytes/1048576\n if (x>1) {print \"0\"} \n
print x \nquit" | bc)

This is used to calculate the differential in load values
provided by the "uptime" command. "uptime" gives load
averages at 1, 5, and 15 minute marks.
#
local one=$(uptime | sed -e "s/.*load average: \(.*\...\), \(.*\...\),
\(.*\...\)/\1/" -e "s/ //g")
local five=$(uptime | sed -e "s/.*load average: \(.*\...\), \(.*\...\),
\(.*\...\).*/\2/" -e "s/ //g")
local diff1_5=$(echo -e "scale = scale ($one) \nx=$one - $five\n if (x>0)
{print \"up\"} else {print \"down\"}\n print x \nquit \n" | bc)
loaddiff="$(echo -n "${one}${diff1_5}")"

Count visible files:
let files=$(ls -l | grep "^-" | wc -l | tr -d " ")
let hiddenfiles=$(ls -l -d .* | grep "^-" | wc -l | tr -d " ")
let executables=$(ls -l | grep ^-..x | wc -l | tr -d " ")
let directories=$(ls -l | grep "^d" | wc -l | tr -d " ")
let hiddendirectories=$(ls -l -d .* | grep "^d" | wc -l | tr -d " ")-2
let linktemp=$(ls -l | grep "^l" | wc -l | tr -d " ")
if ["$linktemp" -eq "0"]
then
 links=""
else
 links=" ${linktemp}l"
fi
unset linktemp
let devicetemp=$(ls -l | grep "^[bc]" | wc -l | tr -d " ")
if ["$devicetemp" -eq "0"]
then
 devices=""
else
 devices=" ${devicetemp}bc"
fi
unset devicetemp

}

PROMPT_COMMAND=prompt_command

function pprom2 {

local BLUE="\[\033[0;34m\]"
local LIGHT_GRAY="\[\033[0;37m\]"
local LIGHT_GREEN="\[\033[1;32m\]"
local LIGHT_BLUE="\[\033[1;34m\]"
local LIGHT_CYAN="\[\033[1;36m\]"
local YELLOW="\[\033[1;33m\]"
local WHITE="\[\033[1;37m\]"
local RED="\[\033[0;31m\]"
local NO_COLOUR="\[\033[0m\]"

case $TERM in
 xterm*)
 TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 TITLEBAR=""
 ;;
esac

PS1="$TITLEBAR\
$BLUE[$RED\$(date +%H%M)$BLUE]\
$BLUE[$RED\u@\h$BLUE]\
$BLUE[\
$LIGHT_GRAY\${files}.\${hiddenfiles}-\
$LIGHT_GREEN\${executables}x \
$LIGHT_GRAY(\${TotalMeg}Mb) \
$LIGHT_BLUE\${directories}.\
\${hiddendirectories}d\
$LIGHT_CYAN\${links}\
$YELLOW\${devices}\
$BLUE]\
$BLUE[${WHITE}\${loaddiff}$BLUE]\
$BLUE[\
$WHITE\$(ps ax | wc -l | sed -e \"s: ::g\")proc\
$BLUE]\
\n\
$BLUE[$RED\PWDBLUE]\
$WHITE\$\
\
$NO_COLOUR "
PS2='> '
PS4='+ '
}

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 38 of 49

Prompt Depending on Connection Type

Bradley M Alexander (storm@tux.org) had the excellent idea of reminding hisusers what kind
of connection they were using to his machine(s), so hecolour-codes prompts dependent on
connection type. Here's the bashrc hesupplied to me:

/etc/bashrc

System wide functions and aliases
Environment stuff goes in /etc/profile

For some unknown reason bash refuses to inherit
PS1 in some circumstances that I can't figure out.
Putting PS1 here ensures that it gets loaded every time.

Set up prompts. Color code them for logins. Red for root, white for
user logins, green for ssh sessions, cyan for telnet,
magenta with red "(ssh)" for ssh + su, magenta for telnet.
THIS_TTY=tty`ps aux | grep $$ | grep bash | awk '{ print $7 }'`
SESS_SRC=`who | grep $THIS_TTY | awk '{ print $6 }'`

SSH_FLAG=0
SSH_IP=`echo $SSH_CLIENT | awk '{ print $1 }'`
if [$SSH_IP] ; then
 SSH_FLAG=1
fi
SSH2_IP=`echo $SSH2_CLIENT | awk '{ print $1 }'`
if [$SSH2_IP] ; then
 SSH_FLAG=1
fi
if [$SSH_FLAG -eq 1] ; then
 CONN=ssh
elif [-z $SESS_SRC] ; then
 CONN=lcl
elif [$SESS_SRC = "(:0.0)" -o $SESS_SRC = ""] ; then
 CONN=lcl
else
 CONN=tel
fi

Okay...Now who we be?
if [`/usr/bin/whoami` = "root"] ; then
 USR=priv
else
 USR=nopriv
fi

#Set some prompts...
if [$CONN = lcl -a $USR = nopriv] ; then
 PS1="[\u \W]\\$ "
elif [$CONN = lcl -a $USR = priv] ; then
 PS1="\[\033[01;31m\][\w]\\$\[\033[00m\] "
elif [$CONN = tel -a $USR = nopriv] ; then
 PS1="\[\033[01;34m\][\u@\h \W]\\$\[\033[00m\] "
elif [$CONN = tel -a $USR = priv] ; then
 PS1="\[\033[01;30;45m\][\u@\h \W]\\$\[\033[00m\] "
elif [$CONN = ssh -a $USR = nopriv] ; then
 PS1="\[\033[01;32m\][\u@\h \W]\\$\[\033[00m\] "
elif [$CONN = ssh -a $USR = priv] ; then
 PS1="\[\033[01;35m\][\u@\h \W]\\$\[\033[00m\] "
fi

PS1="[\u@\h \W]\\$ "
export PS1
alias which="type -path"
alias dir="ls -lF --color"
alias dirs="ls -lFS --color"
alias h=history

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 39 of 49

A Prompt the Width of Your Term

A friend complained that he didn't like having a prompt that kept changingsize because it had
$PWD in it, so I wrote this prompt that adjusts itssize to exactly the width of your term, with
the working directory on thetop line of two.

#!/bin/bash
termwide prompt with tty number
by Giles - created 2 November 98, last tweaked 31 July 2001
#
This is a variant on "termwide" that incorporates the tty number.
#

hostnam=$(hostname -s)
usernam=$(whoami)
temp="$(tty)"
Chop off the first five chars of tty (ie /dev/):
cur_tty="${temp:5}"
unset temp

function prompt_command {

Find the width of the prompt:
TERMWIDTH=${COLUMNS}

Add all the accessories below ...
local temp="--(${usernam}@${hostnam}:${cur_tty})---(${PWD})--"

let fillsize=${TERMWIDTH}-${#temp}
if ["$fillsize" -gt "0"]
then

---"
	# It's theoretically possible someone could need more
	# dashes than above, but very unlikely! HOWTO users,
	# the above should be ONE LINE, it may not cut and
	# paste properly
	fill="${fill:0:${fillsize}}"
	newPWD="${PWD}"
fi

if ["$fillsize" -lt "0"]
then
	fill=""
	let cut=3-${fillsize}
	newPWD="...${PWD:${cut}}"
fi
}

PROMPT_COMMAND=prompt_command

function twtty {

local WHITE="\[\033[1;37m\]"
local NO_COLOUR="\[\033[0m\]"

local LIGHT_BLUE="\[\033[1;34m\]"
local YELLOW="\[\033[1;33m\]"

case $TERM in
 xterm*|rxvt*)
 TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 TITLEBAR=""
 ;;
esac

PS1="$TITLEBAR\
$YELLOW-$LIGHT_BLUE-(\
$YELLOW\$usernam$LIGHT_BLUE@$YELLOW\$hostnam$LIGHT_BLUE:$WHITE\$cur_tty\
${LIGHT_BLUE})-${YELLOW}-\${fill}${LIGHT_BLUE}-(\
$YELLOW\${newPWD}\
$LIGHT_BLUE)-$YELLOW-\
\n\
$YELLOW-$LIGHT_BLUE-(\
$YELLOW\$(date +%H%M)$LIGHT_BLUE:$YELLOW\$(date \"+%a,%d %b %y\")\
$LIGHT_BLUE:$WHITE\$$LIGHT_BLUE)-\
$YELLOW-\
$NO_COLOUR "

PS2="$LIGHT_BLUE-$YELLOW-$YELLOW-$NO_COLOUR "

}

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 40 of 49

image:
 / /data/20/twtty.png (null)

The twtty prompt in action.

The Floating Clock Prompt

I've rewritten this prompt several times. It was originally written usingoctal escape
sequences, but the ones I needed most for this (save andrestore cursor position) aren't
honoured by one of the commonest terminalemulators, rxvt. I rewrote it using tput, and
that'swhat you see here. The required tput codes seem to beuniversally honoured. The
body of the prompt is essentially the same asthe "Lightweight" prompt shown earlier, but a
clock is kept floating in theupper right corner of the term. It will reposition itself correctly
evenif the term is resized.

#!/bin/bash

Rewrite of "clock" using tput

function prompt_command {
prompt_x is where to position the cursor to write the clock
let prompt_x=$(tput cols)-6
Move up one; not sure why we need to do this, but without this, I always
got an extra blank line between prompts
tput cuu1
tput sc
tput cup 0 ${prompt_x}
tput setaf 4 ; tput bold
echo -n "["
tput setaf 1
echo -n "$(date +%H%M)"
tput setaf 4 ; tput bold
echo -n "]"
tput rc
}

PROMPT_COMMAND=prompt_command

function clockt {
local BLUE="\[$(tput setaf 4 ; tput bold)\]"
local LIGHT_RED="\[$(tput setaf 1 ; tput bold)\]"
local WHITE="\[$(tput setaf 7 ; tput bold)\]"
local NO_COLOUR="\[$(tput sgr0)\]"
case $TERM in
 xterm*|rxvt*)
 TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 TITLEBAR=""
 ;;
esac

PS1="${TITLEBAR}\
$BLUE[$LIGHT_RED\u@\h:\w$BLUE]\
$WHITE\$$NO_COLOUR "
PS2='> '
PS4='+ '
}

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 41 of 49

image:

 / /data/20/clockt.png (null)

The floating clock prompt in action. The clock will stay in correctposition even if the term is
resized.

The Elegant Useless Clock Prompt

This is one of the more attractive (and useless) prompts I've made.Because many X terminal
emulators don't implement cursor position save andrestore, the alternative when putting a
clock in the upper right corner isto anchor the cursor at the bottom of the terminal. This
builds on theidea of the "termwide" prompt above, drawing a line up the right side ofthe
screen from the prompt to the clock. A VGA font is required.

Note: There is an odd substitution in here, that may not print properlybeing translated from
SGML to other formats: I had to substitute the screencharacter for \304 - I would normally
have just included the sequence"\304", but it was necessary to make this substitution in this
case.

#!/bin/bash

This prompt requires a VGA font. The prompt is anchored at the bottom
of the terminal, fills the width of the terminal, and draws a line up
the right side of the terminal to attach itself to a clock in the upper
right corner of the terminal.

function prompt_command {
Calculate the width of the prompt:
hostnam=$(echo -n $HOSTNAME | sed -e "s/[\.].*//")
"whoami" and "pwd" include a trailing newline
usernam=$(whoami)
newPWD="${PWD}"
Add all the accessories below ...
let promptsize=$(echo -n "--(${usernam}@${hostnam})---(${PWD})-----" \
 | wc -c | tr -d " ")
Figure out how much to add between user@host and PWD (or how much to
remove from PWD)
let fillsize=${COLUMNS}-${promptsize}
fill=""
Make the filler if prompt isn't as wide as the terminal:
while ["$fillsize" -gt "0"]
do
 fill="${fill}Ã„"
 # The A with the umlaut over it (it will appear as a long dash if
 # you're using a VGA font) is \304, but I cut and pasted it in
 # because Bash will only do one substitution - which in this case is
 # putting $fill in the prompt.
 let fillsize=${fillsize}-1
done
Right-truncate PWD if the prompt is going to be wider than the terminal:
if ["$fillsize" -lt "0"]
then
 let cutt=3-${fillsize}
 newPWD="...$(echo -n $PWD | sed -e "s/\(^.\{$cutt\}\)\(.*\)/\2/")"
fi
#
Create the clock and the bar that runs up the right side of the term
#
local LIGHT_BLUE="\033[1;34m"
local YELLOW="\033[1;33m"
Position the cursor to print the clock:
echo -en "\033[2;$((${COLUMNS}-9))H"
echo -en "$LIGHT_BLUE($YELLOW$(date +%H%M)$LIGHT_BLUE)\304$YELLOW\304\304\277"
local i=${LINES}
echo -en "\033[2;${COLUMNS}H"
Print vertical dashes down the side of the terminal:
while [$i -ge 4]
do
 echo -en "\033[$(($i-1));${COLUMNS}H\263"
 let i=$i-1
done

let prompt_line=${LINES}-1
This is needed because doing \${LINES} inside a Bash mathematical
expression (ie. $(())) doesn't seem to work.
}

PROMPT_COMMAND=prompt_command

function clock3 {
local LIGHT_BLUE="\[\033[1;34m\]"
local YELLOW="\[\033[1;33m\]"
local WHITE="\[\033[1;37m\]"
local LIGHT_GRAY="\[\033[0;37m\]"
local NO_COLOUR="\[\033[0m\]"

case $TERM in
 xterm*)
 TITLEBAR='\[\033]0;\u@\h:\w\007\]'
 ;;
 *)
 TITLEBAR=""
 ;;
esac

PS1="$TITLEBAR\
\[\033[\${prompt_line};0H\]
$YELLOW\332$LIGHT_BLUE\304(\
$YELLOW\${usernam}$LIGHT_BLUE@$YELLOW\${hostnam}\
${LIGHT_BLUE})\304${YELLOW}\304\${fill}${LIGHT_BLUE}\304(\
$YELLOW\${newPWD}\
$LIGHT_BLUE)\304$YELLOW\304\304\304\331\
\n\
$YELLOW\300$LIGHT_BLUE\304(\
$YELLOW\$(date \"+%a,%d %b %y\")\
$LIGHT_BLUE:$WHITE\$$LIGHT_BLUE)\304\
$YELLOW\304\
$LIGHT_GRAY "

PS2="$LIGHT_BLUE\304$YELLOW\304$YELLOW\304$NO_COLOUR "

}

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 42 of 49

Appendix A. GNU Free Documentation License

Table of Contents
0. PREAMBLE1. APPLICABILITY AND DEFINITIONS2. VERBATIM COPYING3. COPYING
IN QUANTITY4. MODIFICATIONS5. COMBINING DOCUMENTS6. COLLECTIONS OF
DOCUMENTS7. AGGREGATION WITH INDEPENDENT WORKS8. TRANSLATION9.
TERMINATION10. FUTURE REVISIONS OF THIS LICENSEHow to use this License for
your documents

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.59 Temple Place, Suite 330, Boston, MA
02111-1307 USAEveryone is permitted to copy and distribute verbatim copiesof this license
document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for works
 whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. The
"Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 43 of 49

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be
viewed and edited directly and straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is not "Transparent"
is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque
formats include PostScript, PDF, proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
 For works in formats which do not have any title page as such, "Title Page" means the
text near the most prominent appearance of the work's title, preceding the beginning of the
body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 44 of 49

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge
using public-standard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
 License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

* Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

* List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has less than five).

* State on the Title page the name of the publisher of the Modified Version, as the
publisher.

* Preserve all the copyright notices of the Document.
* Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.

* Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

* Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

* Include an unaltered copy of this License.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 45 of 49

* Preserve the section entitled "History", and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

* Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to gives
permission.

* In any section entitled "Acknowledgements" or "Dedications", preserve the section's
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

* Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

* Delete any section entitled "Endorsements". Such a section may not be included in
the Modified Version.

* Do not retitle any existing section as "Endorsements" or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 46 of 49

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled
"Acknowledgements", and any sections entitled "Dedications". You must delete all
sections entitled "Endorsements."

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an "aggregate", and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document's
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

TRANSLATION

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 47 of 49

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include
the original English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original English version will
 prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to
 it, you have the option of following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

 Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.1 or any later version published by the Free Software Foundation; with the Invariant
Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which
ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead
of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 48 of 49

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

rate this article:
current rating:
Your rating:

Support this site

image:rdf newsfeed / //static.linuxhowtos.org/data/rdf.png (null)
 |
image:rss newsfeed / //static.linuxhowtos.org/data/rss.png (null)
 |
image:Atom newsfeed / //static.linuxhowtos.org/data/atom.png (null)
- Powered by
image:LeopardCMS / //static.linuxhowtos.org/data/leopardcms.png (null)
 - Running on
image:Gentoo / //static.linuxhowtos.org/data/gentoo.png (null)
 -
Copyright 2004-2020 Sascha Nitsch Unternehmensberatung GmbH
image:Valid XHTML1.1 / //static.linuxhowtos.org/data/xhtml.png (null)
 :
image:Valid CSS / //static.linuxhowtos.org/data/css.png (null)
 :
image:buttonmaker / //static.linuxhowtos.org/data/buttonmaker.png (null)
- Level Triple-A Conformance to Web Content Accessibility Guidelines 1.0 -
- Copyright and legal notices -
Time to create this page: ms
<!--
image:system status display / /status/output.jpg (null)
-->
bodyloaded();

http://linuxhowtos.org/System/Bash Prompt Howto.pdf

page 49 of 49

