
Iptables Tutorial 1.1.19
Oskar Andreasson

Â Â Â Â Â >blueflux@koffein.net>
Â Â Â Â

Copyright Â© 2001-2003 Oskar Andreasson

 Permission is granted to copy, distribute and/or modify thisdocument under the terms of the
GNU Free Documentation License, Version1.1; with the Invariant Sections being
"Introduction" and allsub-sections, with the Front-Cover Texts being "Original Author:
OskarAndreasson", and with no Back-Cover Texts. A copy of the license isincluded in the
section entitled "GNU Free Documentation License".

All scripts in this tutorial are covered by the GNU General PublicLicense. The scripts are free
source; you can redistribute them and/ormodify them under the terms of the GNU General
Public License as publishedby the Free Software Foundation, version 2 of the License.

 These scripts are distributed in the hope that they will beuseful, but WITHOUT ANY
WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU GeneralPublic License for more details.

 You should have received a copy of the GNU General PublicLicense within this tutorial,
under the section entitled "GNU GeneralPublic License"; if not, write to the Free Software
Foundation, Inc., 59Temple Place, Suite 330, Boston, MA 02111-1307 USA

Dedications
 First of all I would like to dedicate this document to mywonderful girlfriend Ninel. She has
supported me more than I ever cansupport her to any degree. I wish I could make you just as
happy as youmake me.

 Second of all, I would like to dedicate this work to all of theincredibly hard working Linux
developers and maintainers. It is peoplelike those who make this wonderful operating system
possible.

Table of Contents
About the authorHow to readPrerequisitesConventions used in this document1.
IntroductionWhy this document was writtenHow it was writtenTerms used in this document2.
PreparationsWhere to get iptablesKernel setupUser-land setupCompiling the user-land
applicationsInstallation on Red Hat 7.13. Traversing of tables and chainsGeneralmangle
tablenat tableFilter table4. The state machineIntroductionThe conntrack entriesUser-land
statesTCP connectionsUDP connectionsICMP connectionsDefault connectionsComplex
protocols and connection tracking5. Saving and restoring large rule-setsSpeed
considerationsDrawbacks with restoreiptables-saveiptables-restore6. How a rule is
builtBasicsTablesCommandsMatchesGeneric matchesImplicit matchesExplicit
matchesUnclean matchTargets/JumpsACCEPT targetDNAT targetDROP targetLOG
targetMARK targetMASQUERADE targetMIRROR targetQUEUE targetREDIRECT
targetREJECT targetRETURN targetSNAT targetTOS targetTTL targetULOG target7.
rc.firewall fileexample rc.firewallexplanation of rc.firewallConfiguration optionsInitial loading of
extra modulesproc set upDisplacement of rules to different chainsSetting up default
policiesSetting up user specified chains in the filter tableINPUT chainFORWARD
chainOUTPUT chainPREROUTING chain of the nat tableStarting SNAT and the
POSTROUTING chain8. Example scriptsrc.firewall.txt scriptstructureThe

ptables.txtrc.flush-iptables.txtLimit-match.txtPid-owner.txtSid-owner.txtTtl-inc.txtIptables-save
rulesetA. Detailed explanations of special commandsListing your active rule-setUpdating and
flushing your tablesB. Common problems and questionsProblems loading modulesState
NEW packets but no SYN bit setSYN/ACK and NEW packetsInternet Service Providers who
use assigned IP addressesLetting DHCP requests through iptablesmIRC DCC problemsC.
ICMP typesD. Other resources and linksE. AcknowledgmentsF. HistoryG. GNU Free
Documentation License0. PREAMBLE1. APPLICABILITY AND DEFINITIONS2. VERBATIM
COPYING3. COPYING IN QUANTITY4. MODIFICATIONS5. COMBINING DOCUMENTS6.
COLLECTIONS OF DOCUMENTS7. AGGREGATION WITH INDEPENDENT WORKS8.
TRANSLATION9. TERMINATION10. FUTURE REVISIONS OF THIS LICENSEHow to use
this License for your documentsH. GNU General Public License0. Preamble1. TERMS AND
CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION2. How to Apply These
Terms to Your New ProgramsI. Example scripts code-baseExample rc.firewall scriptExample
rc.DMZ.firewall scriptExample rc.UTIN.firewall scriptExample rc.DHCP.firewall scriptExample
rc.flush-iptables scriptExample rc.test-iptables script

http://www.linuxhowtos.org/Security/iptables.pdf

page 1 of 107

List of Tables
3.1. Destination local host (our ownmachine)3.2. Source local host (our ownmachine)3.3.
Forwarded packets4.1. User-land states4.2. Internal states6.1. Tables6.2. Commands6.3.
Options6.4. Generic matches6.5. TCP matches6.6. UDP matches6.7. ICMP matches6.8.
Limit match options6.9. MAC match options6.10. Mark match options6.11. Multiport match
options6.12. Owner match options6.13. State matches6.14. TOS matches6.15. TTL
matches6.16. DNAT target6.17. LOG target options6.18. MARK target options6.19.
MASQUERADE target6.20. REDIRECT target6.21. REJECT target6.22. SNAT target6.23.
TOS target6.24. TTL target6.25. ULOG targetC.1. ICMP types

About the author
 I am someone with too many old computers on his hands. I have myown LAN and want all
my machines to be connectedto the Internet, whilst at the same time making myLAN fairly
secure. The new iptables is a goodupgrade from the old ipchains in this regard. With
ipchains, you couldmake a fairly secure network by dropping all incoming packages
notdestined for given ports. However, things like passiveFTP or outgoing DCC inIRC would
cause problems. They assign ports onthe server, tell the client about it, and then let the client
connect.There were some teething problems in the iptables code that I ran into inthe
beginning, and in some respects I found the code not quite ready forrelease in full
production. Today, I'd recommend everyone who usesipchains or even older ipfwadm etc .,to
upgrade - unless they are happywith what their current code is capable of and if it does what
they need.

How to read
This document was written purely so people can start to grasp thewonderful world of iptables.
It was never meant to contain information onspecific security bugs in iptables or Netfilter. If
you find peculiarbugs or behaviors in iptables or any of the subcomponents, you
shouldcontact the Netfilter mailing lists and tell them about the problem andthey can tell you
if this is a real bug or if it has already been fixed.There are very rarely actual security related
bugs found in iptables orNetfilter, however, one or two do slip by once in a while. These
areproperly shown on the front page of the Netfilter main page, and that iswhere you should
go to get information on such topics.

The above also implies that the rule-sets available with this tutorial arenot written to deal with
actual bugs inside Netfilter. The main goal ofthem is to simply show how to set up rules in a
nice simple fashion thatdeals with all problems we may run into. For example, this tutorial
willnot cover how we would close down the HTTP port for the simple reason thatApache
happens to be vulnerable in version 1.2.12 (This is covered really,though not for that reason).

This document was simply written to give everyone a good and simple primerat how to get
started with iptables, but at the same time it was createdto be as complete as possible. It
does not contain any targets or matchesthat are in patch-o-matic for the simple reason that it
would require toomuch effort to keep such a list updated. If you need information aboutthe
patch-o-matic updates, you should read the info that comes with it inpatch-o-matic as well as
the other documentations available on the Netfilter main page.

http://www.linuxhowtos.org/Security/iptables.pdf

page 2 of 107

Prerequisites
This document requires some previous knowledge about Linux/Unix, shellscripting, as well
as how to compile your own kernel, and some simpleknowledge about the kernel internals.

I have tried as much as possible to eradicate all prerequisites needed beforefully grasping
this document, but to some extent it is simply impossible to notneed some previous
knowledge.

Conventions used in this document
The following conventions are used in this document when it comes tocommands, files and
other specific information.

* Code excerpts and command-outputs are printed like this, with all outputin fixed width
font and user-written commands in bold typeface:

[blueflux@work1 neigh]$ ls
default eth0 lo
[blueflux@work1 neigh]$

* All commands and program names in the tutorial are shown in boldtypeface.
* All system items such as hardware, and also kernel internals or abstractsystem items

such as the loopback interface are all shown in anitalic typeface.

* computer output is formatted in this wayin the text.
* filenames and paths in the file-system are shown like /usr/local/bin/iptables.

ChapterÂ 1.Â Introduction

Table of Contents
Why this document was writtenHow it was writtenTerms used in this document

Why this document was written
 Well, I found a big empty space in the HOWTO's out there lackingin information about the
iptables and Netfilter functions in the new Linux2.4.x kernels. Among other things, I'm going
to try to answer questionsthat some might have about the new possibilities like state
matching. Most of this will be illustrated with an example rc.firewall.txt file that you can use in
your /etc/rc.d/ scripts. Yes, this file was originally based upon the masquerading HOWTO for
those of you who recognize it.

 Also, there's a small script that I wrote just in case you screwup as much as I did during the
configuration available as rc.flush-iptables.txt.

http://www.linuxhowtos.org/Security/iptables.pdf

page 3 of 107

How it was written
I've consulted Marc Boucher and others from the core Netfilter team. Many heartfelt thanks to
them for their work and for their help on this tutorial, that I originally wrote for
boingworld.com, and now maintain for my own site frozentux.net. This document will guide
you through the setup process step by step and hopefully help you to understand some more
about the iptables package. I will base most of the stuff here on the example rc.firewall file,
since I findthat example a good way to learn how to use iptables. I have decidedto just follow
the basic chains and from there go down into each and oneof the chains traversed in each
due order. That way the tutorial is a little bit harder to follow, though this way is more logical.
Whenever you find something that's hard to understand, just come back to this tutorial.

Terms used in this document
This document contains a few terms that may need more detailed explanations before you
read them. This section will try to cover the most obvious ones and how I have chosen to use
them within this document.

DNAT - Destination Network Address Translation. DNAT refers to the technique of translating
the Destination IP address of a packet, or to change it simply put. This is used together with
SNAT to allow several hosts to share a single Internet routable IP address, and to still
provide Server Services. This is normally done by assigning different ports with a Internet
routable IP address,and then tell the Linux router where to send the traffic.

Stream - This term refers to a connection that sends and receives packets that are related to
each other in some fashion. Basically, I have used this term for any kind of connection that
sends two or more packets in both directions. In TCP this may mean a connection that sends
a SYN and then replies with an SYN/ACK, but it may also mean a connection that sends a
SYN and then replies with an ICMP Host unreachable. In other words, I use this term very
loosely.

SNAT - Source Network Address Translation. This refers to the techniques used to translate
one source address to another in a packet. This is used to make it possible for several hosts
to share a single Internet routable IP address, since there is currently a shortage of available
IP addresses in IPv4 (IPv6 will solve this).

 State - This term refers to which state the packet is in, eitheraccording to RFC 793 -
Transmission Control Protocol or according to userside states used in Netfilter/iptables. Note
that the used states internally, and externally, do not fully follow the RFC 793 specification
fully. The main reason is that Netfilter has to make several assumptions about the
connections and packets.

User space - With this term I mean everything and anything that takes placeoutside the
kernel. For example, invoking iptables -h takesplace outside the kernel, while iptables -A
FORWARD -p tcp -jACCEPT takes place (partially) within the kernel, since a new ruleis
added to the ruleset.

Kernel space - This is more or less the opposite of User space. This impliesthe actions that
take place within the kernel, and not outside of the kernel.

http://www.linuxhowtos.org/Security/iptables.pdf

page 4 of 107

Userland - See User space.

ChapterÂ 2.Â Preparations

Table of Contents
Where to get iptablesKernel setupUser-land setupCompiling the user-land
applicationsInstallation on Red Hat 7.1

 This chapter is aimed at getting you started and to help you understandthe role Netfilter and
iptables play in Linux today.This chapter should hopefully get you set up and finished to go
with yourexperimentation, and installation of your firewall. Given time andperseverance, you'll
then get it to perform exactly as you want it to.

Where to get iptables
 The iptables user-space package can bedownloaded from the
http://www.netfilter.org/documentation/index.html#FAQ- The official Netfilter Frequently
AskedQuestions. Also a good place to start at when wondering whatiptables and Netfilter is
about. . The iptables package also makes use of kernel space facilities which can be
configured into the kernel during make configure. The necessary steps will be discussed a bit
further down in this document.

Kernel setup
To run the pure basics of iptables you need to configure the following options into the kernel
while doing make config or one of its related commands:

CONFIG_PACKET - This option allowsapplications and utilities that needs to work directly to
various network devices. Examples of such utilities are tcpdump or snort.

Note
CONFIG_PACKET is strictly speaking not needed for iptables to work, but since it contains
so many uses, I have chosen to include it here. If you do not want it, don't include it.

CONFIG_NETFILTER - This option is required if you're going to use your computer as a
firewall or gateway to the Internet. In other words, this is most definitely required for anything
in this tutorial to work at all. I assume you will want this, since you are reading this.

 And of course you need to add the proper drivers for yourinterfaces to work properly, i.e.
Ethernet adapter,PPP and SLIP interfaces.The above will only add some of the pure basics
in iptables. You won't beable to do anything productive to be honest, it just adds the
framework tothe kernel. If you want to use the more advanced options in Iptables, youneed to
set up the proper configuration options in your kernel. Here wewill show you the options
available in a basic 2.4.9 kernel and a briefexplanation :

 CONFIG_IP_NF_CONNTRACK - Thismodule is needed to make connection tracking.
Connection tracking is usedby, among other things, NAT andMasquerading. If you need to
firewall machines ona LAN you most definitely should mark thisoption. For example, this
module is required by the rc.firewall.txt script towork.

http://www.linuxhowtos.org/Security/iptables.pdf

page 5 of 107

 CONFIG_IP_NF_FTP - This moduleis required if you want to do connection tracking onFTP
connections. SinceFTP connections are quite hard to do connectiontracking on in normal
cases, conntrack needs a so called helper, thisoption compiles the helper. If you do not add
this module you won't beable to FTP through a firewall or gateway properly.

 CONFIG_IP_NF_IPTABLES - Thisoption is required if you want do any kind of
filtering,masquerading or NAT. Itadds the whole iptables identification framework to the
kernel. Withoutthis you won't be able to do anything at all with iptables.

 CONFIG_IP_NF_MATCH_LIMIT - Thismodule isn't exactly required but it's used in the
example rc.firewall.txt. This optionprovides the LIMIT match, that adds the possibility to
control how manypackets per minute that are to be matched, governed by an
appropriaterule. For example, -m limit --limit 3/minute wouldmatch a maximum of 3 packets
per minute. This module can also be used toavoid certain Denial of Service attacks.

 CONFIG_IP_NF_MATCH_MAC - Thisallows us to match packets based on MACaddresses.
Every Ethernet adapter has its own MACaddress. We could for instance block packets based
on whatMAC address is used and block a certain computerpretty well since the MAC address
very seldomchange. We don't use this option in the rc.firewall.txt example or anywhere else.

CONFIG_IP_NF_MATCH_MARK - This allows us touse a MARK match. For example, if we
use the targetMARK we could mark a packet and then depending on if thispacket is marked
further on in the table, we can match based on this mark. Thisoption is the actual match
MARK, and further down we willdescribe the actual target MARK.

CONFIG_IP_NF_MATCH_MULTIPORT - This moduleallows us to match packets with a
whole range of destination ports or sourceports. Normally this wouldn't be possible, but with
this match it is.

CONFIG_IP_NF_MATCH_TOS - With this match wecan match packets based on their TOS
field.TOS stands for Type Of Service.TOS can also be set by certain rules in themangle table
and via the ip/tc commands.

 CONFIG_IP_NF_MATCH_TCPMSS -This option adds the possibility for us to matchTCP
packets based on theirMSS field.

 CONFIG_IP_NF_MATCH_STATE - Thisis one of the biggest news in comparison to
ipchains.With this module we can do stateful matching on packets. For example, ifwe have
already seen traffic in two directions in aTCP connection, this packet will be counted
asESTABLISHED. This module is used extensively in therc.firewall.txtexample.

 CONFIG_IP_NF_MATCH_UNCLEAN -This module will add the possibility for us to matchIP,
TCP,UDP and ICMP packetsthat don't conform to type or are invalid. We could for example
drop thesepackets, but we never know if they are legitimate or not. Note that thismatch is still
experimental and might not work perfectly in all cases.

CONFIG_IP_NF_MATCH_OWNER - This option willadd the possibility for us to do matching
based on the owner of a socket. Forexample, we can allow only the user root to have Internet
access. This modulewas originally just written as an example on what could be done with the
newiptables. Note that this match is still experimental andmight not work for everyone.

 CONFIG_IP_NF_FILTER - Thismodule will add the basic filter table which willenable you to
do IP filtering at all. In thefilter table you'll find theINPUT, FORWARD andOUTPUT chains.
This module is required if youplan to do any kind of filtering on packets that you receive and
send.

http://www.linuxhowtos.org/Security/iptables.pdf

page 6 of 107

 CONFIG_IP_NF_TARGET_REJECT -This target allows us to specify that an ICMPerror
message should be sent in reply to incoming packets, instead ofplainly dropping them dead
to the floor. Keep in mind thatTCP connections, as opposed toICMP and UDP, are
alwaysreset or refused with a TCP RST packet.

 CONFIG_IP_NF_TARGET_MIRROR -This allows packets to be bounced back to the sender
of the packet. Forexample, if we set up a MIRROR target ondestination port HTTP on
ourINPUT chain and someone tries to access thisport, we would bounce his packets back to
him and finally he wouldprobably see his own homepage.

 CONFIG_IP_NF_NAT - This moduleallows network address translation, orNAT, in its
different forms. This option gives usaccess to the nat table in iptables. This option is required
if we want todo port forwarding, masquerading, etc. Note that this option is notrequired for
firewalling and masquerading of aLAN, but you should have it present unless youare able to
provide unique IP addresses for all hosts. Hence, this optionis required for the example
rc.firewall.txt script to work properly, and mostdefinitely on your network if you do not have
the ability to add unique IPaddresses as specified above.

 CONFIG_IP_NF_TARGET_MASQUERADE- This module adds the MASQUERADE target.
For instanceif we don't know what IP we have to the Internet this would be thepreferred way
of getting the IP instead of usingDNAT or SNAT. In otherwords, if we use DHCP,PPP, SLIP
or some otherconnection that assigns us an IP, we need to use this target instead ofSNAT.
Masquerading gives a slightly higher loadon the computer than NAT, but will work withoutus
knowing the IP address in advance.

 CONFIG_IP_NF_TARGET_REDIRECT -This target is useful together with
applicationproxies, for example. Instead of letting a packet pass rightthrough, we remap them
to go to our local box instead. In other words, wehave the possibility to make a transparent
proxythis way.

 CONFIG_IP_NF_TARGET_LOG - Thisadds the LOG target and its functionality toiptables.
We can use this module to log certain packetsto syslogd and hence see what is happening to
the packet. This isinvaluable for security audits, forensics or debugging a script you
arewriting.

 CONFIG_IP_NF_TARGET_TCPMSS -This option can be used to counter Internet Service
Providers and serverswho block ICMP Fragmentation Needed packets. Thiscan result in
web-pages not getting through, small mails getting throughwhile larger mails don't, ssh works
but scp dies after handshake, etc. Wecan then use the TCPMSS target to overcome thisby
clamping our MSS (Maximum Segment Size) to thePMTU (Path Maximum Transmit Unit).
This way,we'll be able to handle what the authors of Netfilter them selves call"criminally
brain-dead ISPs or servers" in the kernel configuration help.

 CONFIG_IP_NF_COMPAT_IPCHAINS -Adds a compatibility mode with the
obsolescentipchains. Do not look to this as any real long termsolution for solving migration
from Linux 2.2 kernels to 2.4 kernels,since it may well be gone with kernel 2.6.

 CONFIG_IP_NF_COMPAT_IPFWADM -Compatibility mode with obsolescent ipfwadm.
Definitelydon't look to this as a real long term solution.

 As you can see, there is a heap of options. I have brieflyexplained here what kind of extra
behaviors you can expect from eachmodule. These are only the options available in a vanilla
Linux 2.4.9kernel. If you would like to take a look at more options, I suggest youlook at the
patch-o-matic functions inNetfilter user-land which will add heaps of otheroptions in the
kernel. POM fixes are additionsthat are supposed to be added in the kernel in the future but
has notquite reached the kernel yet. These functions should be added in thefuture, but has
not quite made it in yet. This may be for various reasons- such as the patch not being stable
yet, to Linus Torvalds being unableto keep up, or not wanting to let the patch in to the
mainstream kernelyet since it is still experimental.

http://www.linuxhowtos.org/Security/iptables.pdf

page 7 of 107

 You will need the following options compiled into your kernel,or as modules, for the
rc.firewall.txt script to work. If you need helpwith the options that the other scripts need, look
at the example firewallscripts section.

* CONFIG_PACKET
* CONFIG_NETFILTER
* CONFIG_IP_NF_CONNTRACK
* CONFIG_IP_NF_FTP
* CONFIG_IP_NF_IRC
* CONFIG_IP_NF_IPTABLES
* CONFIG_IP_NF_FILTER
* CONFIG_IP_NF_NAT
* CONFIG_IP_NF_MATCH_STATE
* CONFIG_IP_NF_TARGET_LOG
* CONFIG_IP_NF_MATCH_LIMIT
* CONFIG_IP_NF_TARGET_MASQUERADE

 At the very least the above will be required for the rc.firewall.txt script. Inthe other example
scripts I will explain what requirements they have intheir respective sections. For now, let's
try to stay focused on the mainscript which you should be studying now.

User-land setup
 First of all, let's look at how we compile theiptables package. It's important to realize that
formost part configuration and compilation of iptables goes hand in hand withthe kernel
configuration and compilation. Certain distributions comes withthe iptables package
preinstalled, one of these are RedHat. However, in Red Hat it is disabled per default. We will
check closeron how to enable it and take a look at other distributions further on inthis
chapter.

Compiling the user-land applications

 First of all unpack the iptables package.Here, we have used the iptables 1.2.6a package and
avanilla 2.4 kernel. Unpack as usual, using bzip2 -cdiptables-1.2.6a.tar.bz2 | tar -xvf - (this
can also beaccomplished with the tar -xjvfiptables-1.2.6a.tar.bz2, which should do pretty
much the same asthe first command. However, this may not work with older versions oftar).
The package should now be unpacked properly intoa directory named iptables-1.2.6a.
Formore information read the iptables-1.2.6a/INSTALLfile which contains pretty good
information on compiling and getting theprogram to run.

 After this, there you have the option of configuring andinstalling extra modules and options
etcetera for the kernel.The stepdescribed here will only check and install standard patches
that arepending for inclusion to the kernel, there are some even more experimentalpatches
further along, which may only be available when you carry outother steps.

http://www.linuxhowtos.org/Security/iptables.pdf

page 8 of 107

Note
 Some of these patches are highly experimental and may not be such agood idea to install
them. However, there are heaps of extremelyinteresting matches and targets in this
installation step so don't beafraid of at least looking at them.

 To carry out this step we do something like this from the rootof the iptables package:

 make pending-patches KERNEL_DIR=/usr/src/linux/
The variable KERNEL_DIR should point to the actual place thatyour kernel source is located
at. Normally this should be/usr/src/linux/ but this may vary, and most probably youwill know
yourself where the kernel source is available.

Note
 This only asks about certain patches that are just about toenter the kernel anyway. There
might be more patches and additions thatthe developers of Netfilter are about to add to the
kernel, but is a bitfurther away from actually getting there. One way to install these are
bydoing the following:

make most-of-pom KERNEL_DIR=/usr/src/linux/
 The above command would ask about installing parts of what inNetfilter world is called
patch-o-matic, but still skipthe most extreme patches that might cause havoc in your kernel.
Note thatwe say ask, because that's what these commands actually do. They ask youbefore
anything is changed in the kernel source. To be able to installall of the patch-o-maticstuff you
will need to run the following command:

 make patch-o-matic KERNEL_DIR=/usr/src/linux/
Don't forget to read the help for each patch thoroughly before doing anything. Some patches
will destroy other patches while others may destroy your kernel if used together with some
patches from patch-o-maticetc.

Note
You may totally ignore the above steps if you don't want topatch your kernel, it is in other
words not necessary to do the above. However,there are some really interesting things in
thepatch-o-matic that you may want to look at so there'snothing bad in just running the
commands and see what they contain.

 After this you are finished doing thepatch-o-matic parts of installation, you may nowcompile
a new kernel making use of the new patches that you have added tothe source. Don't forget
to configure the kernel again since the newpatches probably are not added to the configured
options. You may waitwith the kernel compilation until after the compilation of the
user-landprogram iptables if you feel like it, though.

Continue by compiling the iptables user-land application. Tocompile iptables you issue a
simple command that looks likethis:

 make KERNEL_DIR=/usr/src/linux/
 The user-land application should now compile properly. If not,you are on your own, or you
could subscribe to the Netfilter mailing list, where you have thechance of asking for help you
with your problems. There are a few thingsthat might go wrong with the installation of
iptables,so don't panic if it won't work. Try to think logically about it and findout what's wrong,
or get someone to help you.

http://www.linuxhowtos.org/Security/iptables.pdf

page 9 of 107

 If everything has worked smoothly, you're ready to install thebinaries by now. To do this, you
would issue the following command toinstall them:

make install KERNEL_DIR=/usr/src/linux/
 Hopefully everything should work in the program now. To use anyof the changes in the
iptables user-land applicationsyou should now recompile and reinstall your kernel and
modules, if youhadn't done so before. For more information about installing the
user-landapplications from source, check the INSTALL file inthe source which contains
excellent information on the subject ofinstallation.

Installation on Red Hat 7.1

 Red Hat 7.1 comes preinstalled with a 2.4.x kernel that hasNetfilter and iptablescompiled in.
It also contains all the basic user-land programs andconfiguration files that is needed to run
it. However, the Red Hat peoplehave disabled the whole thing by using the backward
compatibleipchains module. Annoying to say the least, and a lotof people keep asking
different mailing lists whyiptables don't work. So, let's take a brief look at howto turn the
ipchains module off and how to installiptables instead.

Note
 The default Red Hat 7.1 installation today comes with anhopelessly old version of the
user-space applications, so you might want tocompile a new version of the applications as
well as install a new andcustom compiled kernel before fully exploitingiptables.

First of all you will need to turn off the ipchains modulesso it won't start in the future. To do
this, you will need to change somefilenames in the /etc/rc.d/ directory-structure. Thefollowing
command should do it:

 chkconfig --level 0123456 ipchains off
 By doing this we move all the soft links that points to the/etc/rc.d/init.d/ipchains script to
K92ipchains. Thefirst letter which per default would be S, tells the initscripts to startthe script.
By changing this to K we tell it to Kill the service instead,or to not run it if it was not previously
started. Now the service won'tbe started in the future.

However, to stop the service from actually running right now we need to run another
command. This is the service command which can be used to work on currently running
services. We would then issue the following command to stop the ipchains service:

service ipchains stop
Finally, to start the iptables service. First of all, we needto know which run-levels we want it
to run in. Normally this would be in run-level2, 3 and 5. These run-levels are used for the
following things:

* 2. Multiuser without NFS or the same as 3 if there is no networking.
* 3. Full multiuser mode, i.e. the normal run-level to run in.
* 5. X11. This is used if you automatically boot into Xwindows.

http://www.linuxhowtos.org/Security/iptables.pdf

page 10 of 107

To make iptables run in these run-levels we would do thefollowing commands:
chkconfig --level 235 iptables on
The above commands would in other words make the iptablesservice run in run-level 2, 3
and 5. If you'd like theiptables service to run in some other run-level you wouldhave to issue
the same command in those. However, none of the other run-levelsshould be used, so you
should not really need to activate it for thoserun-levels. Level 1 is for single user mode, i.e,
when you need to fix a screwedup box. Level 4 should be unused, and level 6 is for shutting
the computer down.

To activate the iptables service, we just run the followingcommand:
 service iptables start
 There are no rules in the iptables script.To add rules to an Red Hat 7.1 box, there is two
common ways. Firstly, youcould edit the /etc/rc.d/init.d/iptables script. Thiswould have the
undesired effect of deleting all the rules if you updatedthe iptables package by RPM. The
other way would be to load the rule-setand then save it with the iptables-save command
andthen have it loaded automatically by the rc.d scripts.

 First we will describe the how to set upiptables by cutting and pasting to theiptables init.d
script. To add rules that are to be runwhen the computer starts the service, you add them
under the start)section, or in the start() function. Note, if you add the rules under thestart)
section don't forget to stop the start() function in the start)section from running. Also, don't
forget to edit a the stop) sectioneither which tells the script what to do when the computer is
going downfor example, or when we are entering a run-level that doesn't requireiptables.
Also, don't forget to check out the restartsection and condrestart. Note that all this work will
probably be trashedif you have, for example, Red Hat Network automatically update
yourpackages. It may also be trashed by updating from theiptables RPM package.

 The second way of doing the set up would require the following:First of all, make and write a
rule-set in a shell script file, or directly withiptables, that will meet your requirements, and
don'tforget to experiment a bit. When you find a set up that works withoutproblems, or as you
can see without bugs, use theiptables-save command. You could either use itnormally, i.e.
iptables-save > /etc/sysconfig/iptables,which would save the rule-set to the
file/etc/sysconfig/iptables. This file is automaticallyused by the iptables rc.d script to restore
the rule-setin the future. The other way is to save the script by doingservice iptables save,
which would save the scriptautomatically to /etc/sysconfig/iptables. The nexttime you reboot
the computer, the iptables rc.d scriptwill use the command iptables-restore to restore
therule-set from the save-file /etc/sysconfig/iptables.Do not intermix these two methods,
since they may heavily damage eachother and render your firewall configuration useless.

When all of these steps are finished, you can deinstall the currentlyinstalled ipchains and
iptables packages.This because we don't want the system to mix up the newiptables
user-land application with the old preinstallediptables applications. This step is only
necessary if youare going to install iptables from the source package. It's notunusual that the
new and the old package to get mixed up, since the rpm basedinstallation installs the
package in non-standard places and won't getoverwritten by the installation for the new
iptables package.To carry out the deinstallation, do as follows:

rpm -e iptables

http://www.linuxhowtos.org/Security/iptables.pdf

page 11 of 107

 And why keep ipchains lying around if youwon't be using it any more? Removing it is done
the same way as with theold iptables binaries, etc:

rpm -e ipchains
 After all this has been completed, you will have finished withthe update of the iptables
package from source, havingfollowed the source installation instructions. None of the old
binaries,libraries or include files etc should be lying around any more.

ChapterÂ 3.Â Traversing of tables and chains

Table of Contents
Generalmangle tablenat tableFilter table
In this chapter we'll discuss how packets traverse the differentchains, and in which order. We
will also discuss the order in which thetables are traversed. We'll see how valuable this is
later on, when wewrite our own specific rules. We will also look at the points whichcertain
other components, that also are kernel dependent, enter into thepicture. Which is to say the
different routing decisions and so on. Thisis especially necessary if we want to write
iptablesrules that could change routing patterns/rules for packets; i.e. why andhow the
packets get routed, good examples of this isDNAT and SNAT. Not to be forgottenare, of
course, the TOS bits.

General
 When a packet first enters the firewall, it hits the hardwareand then gets passed on to the
proper device driver in the kernel. Thenthe packet starts to go through a series of steps in the
kernel, before itis either sent to the correct application (locally), or forwarded toanother host -
or whatever happens to it.

 First, let us have a look at a packet that is destined for ourown local host. It would pass
through the following steps before actuallybeing delivered to our application that receives it:

TableÂ 3.1.Â Destination local host (our ownmachine)
StepTableChainComment1Â Â On the wire (e.g., Internet)2Â Â Comes in on the interface (e.g.,
eth0)3manglePREROUTINGThis chain is normally used for mangling packets, i.e.,changing
TOS and so on.4natPREROUTINGThis chain is used for DNAT mainly. Avoid filtering in this
chain since it will be bypassed in certain cases.5Â Â Routing decision, i.e., is the packet
destined for ourlocal host or to be forwarded and where.6mangleINPUTAt this point, the
mangle INPUT chain is hit. We use this chain to mangle packets, after they have been
routed, but before they are actually sent to the process on the machine.7filterINPUTThis is
where we do filtering for all incoming trafficdestined for our local host. Note that all incoming
packets destined for thishost pass through this chain, no matter what interface or in which
directionthey came from.8Â Â Local process/application (i.e., server/client program)

Note that this time the packet was passed through theINPUT chain instead of theFORWARD
chain. Quite logical. Most probably the onlything that's really logical about the traversing of
tables and chains in youreyes in the beginning, but if you continue to think about it, you'll
findit will get clearer in time.

Now we look at the outgoing packets from our own local host and what steps theygo through.

http://www.linuxhowtos.org/Security/iptables.pdf

page 12 of 107

TableÂ 3.2.Â Source local host (our ownmachine)
StepTableChainComment1Â Â Local process/application (i.e., server/clientprogram)2Â Â Routing
decision. What source address to use, what outgoinginterface to use, and other necessary
information that needs to begathered.3mangleOUTPUTThis is where we mangle packets, it
is suggested that you donot filter in this chain since it can have side effects.4natOUTPUTThis
chain can be used to NAT outgoing packets from thefirewall itself.5filterOUTPUTThis is
where we filter packets going out from the localhost.6manglePOSTROUTINGThe
POSTROUTING chain in themangle table is mainly used when we want to do mangling on
packets before theyleave our host, but after the actual routing decisions. This chain will be
hitby both packets just traversing the firewall, as well as packets created bythe firewall
itself.7natPOSTROUTINGThis is where we do SNAT as described 	earlier. It is suggested
that you don't do filtering here since it can 	have side effects, and certain packets might slip
through even though 	you set a default policy of DROP.8Â Â Goes out on some interface (e.g.,
eth0)9Â Â On the wire (e.g., Internet)

In this example, we're assuming that the packet is destined for another host onanother
network. The packet goes through the different steps in the followingfashion:

TableÂ 3.3.Â Forwarded packets
StepTableChainComment1Â Â On the wire (i.e., Internet)2Â Â Comes in on the interface (i.e.,
eth0)3manglePREROUTINGThis chain is normally used for mangling packets, i.e.,changing
TOS and so on.4natPREROUTINGThis chain is used for DNAT mainly. 	SNAT is done further
on. Avoid filtering in 	this chain since it will be bypassed in certain cases.5Â Â Routing decision,
i.e., is the packet destined for ourlocal host or to be forwarded and
where.6mangleFORWARDThe packet is then sent on to theFORWARD chain of the mangle
table. This can be usedfor very specific needs, where we want to mangle the packets after
the initialrouting decision, but before the last routing decision made just before thepacket is
sent out.7filterFORWARDThe packet gets routed onto theFORWARD chain. Only forwarded
packets go throughhere, and here we do all the filtering. Note that all traffic that'sforwarded
goes through here (not only in one direction), so you need tothink about it when writing your
rule-set.8manglePOSTROUTINGThis chain is used for specific types of packetmangling that
we wish to take place after all kinds of routing decisions hasbeen done, but still on this
machine.9natPOSTROUTINGThis chain should first and foremost be used forSNAT. Avoid
doingfiltering here, since certain packets might pass this chain without everhitting it. This is
also where Masquerading is done.10Â Â Goes out on the outgoing interface (i.e., eth1).11Â Â Out
on the wire again (i.e., LAN).

 As you can see, there are quite a lot of steps to pass through.The packet can be stopped at
any of the iptableschains, or anywhere else if it is malformed; however, we are
mainlyinterested in the iptables aspect of this lot. Do notethat there are no specific chains or
tables for different interfaces oranything like that. FORWARD is always passed byall packets
that are forwarded over this firewall/router.

Caution
Do not use the INPUT chain to filter on in the previousscenario! INPUT is meant solelyfor
packets to our localhost that do not get routed to any otherdestination.

We have now seen how the different chains are traversed in three separatescenarios. If we
were to figure out a good map of all this, it would looksomething like this:

http://www.linuxhowtos.org/Security/iptables.pdf

page 13 of 107

To clarify this image, consider this. If we get a packet into the firstrouting decision that is not
destined for the local machine itself, it will berouted through the FORWARD chain. If the
packet is,on the other hand, destined for an IP address thatthe local machine is listening to,
we would send the packet through theINPUT chain and to the local machine.

Also worth a note, is the fact that packets may be destined for the localmachine, but the
destination address may be changed within thePREROUTING chain by doingNAT. Since this
takes place before the first routingdecision, the packet will be looked upon after this change.
Because of this,the routing may be changed before the routing decision is done. Do note,
thatall packets will be going through one or the other pathin this image. If you DNAT a packet
back to the samenetwork that it came from, it will still travel through the rest of the chainsuntil
it is back out on the network.

Tip
If you feel that you want more information, you could use the rc.test-iptables.txtscript. This
test script should give you the necessary rules to test how thetables and chains are
traversed.

mangle table
This table should as we've already noted mainly be used for mangling packets.In other
words, you may freely use the mangle matches etc that could be usedto change TOS (Type
Of Service) fields and so on.

Caution
 You are strongly advised not to use this table for anyfiltering; nor will any DNAT, SNATor
Masquerading work in this table.

Targets that are only valid in the mangle table:

* TOS
* TTL
* MARK

 The TOS target is used to set and/or changethe Type of Service field in the packet.
Thiscould be used for setting up policies on the network regarding how apacket should be
routed and so on. Note that this has not been perfectedand is not really implemented on the
Internet and most of the routersdon't care about the value in this field, and sometimes, they
act faultyon what they get. Don't set this in other words for packets going to theInternet
unless you want to make routing decisions on it, with iproute2.

 The TTL target is used to change theTTL (Time To Live) field of the packet. We couldtell
packets to only have a specific TTL and soon. One good reason for this could be that we
don't want to give ourselfaway to nosy Internet Service Providers. Some Internet Service
Providersdo not like users running multiple computers on one single connection,and there
are some Internet Service Providers known to look for a singlehost generating different TTL
values, andtake this as one of many signs of multiple computers connected to asingle
connection.

http://www.linuxhowtos.org/Security/iptables.pdf

page 14 of 107

 The MARK target is used to set specialmark values to the packet. These marks could
thenbe recognized by the iproute2 programs to do differentrouting on the packet depending
on what mark theyhave, or if they don't have any. We could also do bandwidth limiting
andClass Based Queuing based on these marks.

nat table
This table should only be used for NAT(Network Address Translation) on different packets. In
other words, it shouldonly be used to translate the packet's source field or destination field.
Note that,as we have said before, only the first packet in a stream will hit this chain.After this,
the rest of the packets will automatically have the sameaction taken on them as the first
packet. The actual targets that dothese kind of things are:

* DNAT
* SNAT
* MASQUERADE

 The DNAT target is mainly used in cases where you have a public IP and want to redirect
accesses to the firewall to some other host (on a DMZ for example). In other words, we
change the destination address of the packet and reroute it to the host.

 SNAT is mainly usedfor changing the source address of packets. For the most part you'll
hideyour local networks or DMZ, etc. A very good examplewould be that of a firewall of which
we know outside IP address, butneed to substitute our local network's IP numbers with that
of our firewall.With this target the firewall will automatically SNATand De-SNAT the packets,
hence making it possible to makeconnections from the LAN to the Internet. If yournetwork
uses 192.168.0.0/netmask for example, the packets would never get backfrom the Internet,
because IANA has regulated these networks (amongothers) as private and only for use in
isolated LANs.

 The MASQUERADE target is used in exactly the same way asSNAT, but the
MASQUERADE target takes alittle bit more overhead to compute. The reason for this, is that
each timethat the MASQUERADE target gets hit by a packet, itautomatically checks for the
IP address to use, instead of doing as theSNAT target does - just using the single configured
IPaddress. The MASQUERADE target makes it possible to workproperly with Dynamic
DHCP IP addresses that your ISPmight provide for your PPP, PPPoE orSLIP connections to
the Internet.

Filter table
 The filter table is mainly used forfiltering packets. We can match packets and filter them in
whatever way wewant. This is the place that we actually takeaction against packets and look
at what they contain andDROP or /ACCEPT them, depending ontheir content. Of course we
may also do prior filtering; however, thisparticular table, is the place for which filtering was
designed. Almost alltargets are usable in this chain. We will be more prolific about the filter
table here; however you now know that this table is the right place to do your main filtering.

http://www.linuxhowtos.org/Security/iptables.pdf

page 15 of 107

ChapterÂ 4.Â The state machine

Table of Contents
IntroductionThe conntrack entriesUser-land statesTCP connectionsUDP connectionsICMP
connectionsDefault connectionsComplex protocols and connection tracking

 This chapter will deal with the state machine and explain it indetail. After reading trough it,
you should have a complete understanding ofhow the State machine works. We will also go
through a large set of examples onhow states are dealt within the state machine itself. These
should clarifyeverything in practice.

Introduction
 The state machine is a special part within iptables that should really notbe called the state
machine at all, since it is really a connection trackingmachine. However, most people
recognize it under the first name. Throughoutthis chapter i will use this names more or less
as if they where synonymous.This should not be overly confusing. Connection tracking is
done to let theNetfilter framework know the state of a specific connection. Firewalls
thatimplement this are generally called stateful firewalls. A stateful firewall isgenerally much
more secure than non-stateful firewalls since it allows us towrite much tighter rule-sets.

 Within iptables, packets can be related to tracked connectionsin four different so called
states. These are known asNEW, ESTABLISHED,RELATED and INVALID. We will
discusseach of these in more depth later. With the --statematch we can easily control who or
what is allowed to initiate newsessions.

All of the connection tracking is done by special framework within the kernelcalled conntrack.
conntrack may be loaded either as a module, or as aninternal part of the kernel itself. Most of
the time, we need and want morespecific connection tracking than the default conntrack
engine can maintain.Because of this, there are also more specific parts of conntrack that
handlesthe TCP, UDP orICMP protocols among others. These modules grabsspecific,
unique, information from the packets, so that they may keep track ofeach stream of data. The
information that conntrack gathers is then used totell conntrack in which state the stream is
currently in. For example,UDP streams are, generally, uniquely identified bytheir destination
IP address, source IPaddress, destination port andsource port.

In previous kernels, we had the possibility to turn on and offdefragmentation. However, since
iptables and Netfilter were introducedand connection tracking in particular, this option was
gotten rid of. Thereason for this is that connection tracking can not work properly
withoutdefragmenting packets, and hence defragmenting has been incorporated
intoconntrack and is carried out automatically. It can not be turned off,except by turning off
connection tracking. Defragmentation is always carriedout if connection tracking is turned on.

All connection tracking is handled in the PREROUTINGchain, except locally generated
packets which are handled in theOUTPUT chain. What this means is that iptables willdo all
recalculation of states and so on within thePREROUTING chain. If we send the initial packet
in astream, the state gets set to NEW within theOUTPUT chain, and when we receive a
return packet,the state gets changed in the PREROUTING chain toESTABLISHED, and so
on. If the first packet is notoriginated by ourself, the NEW state is set within
thePREROUTING chain of course. So, all state changes andcalculations are done within the
PREROUTING andOUTPUT chains of the nat table.

http://www.linuxhowtos.org/Security/iptables.pdf

page 16 of 107

The conntrack entries
 Let's take a brief look at a conntrack entry and how to read them in/proc/net/ip_conntrack.
This gives a list of all thecurrent entries in your conntrack database. If you have
theip_conntrack module loaded, a catof /proc/net/ip_conntrack might look like:

tcp 6 117 SYN_SENT src=192.168.1.6 dst=192.168.1.9 sport=32775 \
 dport=22 [UNREPLIED] src=192.168.1.9 dst=192.168.1.6 sport=22 \
 dport=32775 use=2

 This example contains all the information that the conntrack modulemaintains to know
which state a specific connection is in. First of all, wehave a protocol, which in this case is
tcp. Next, the same valuein normal decimal coding. After this, we see how long this
conntrack entry hasto live. This value is set to 117 seconds right now and is
decrementedregularly until we see more traffic. This value is then reset to the defaultvalue for
the specific state that it is in at that relevant point of time.Next comes the actual state that this
entry is in at the present point oftime. In the above mentioned case we are looking at a
packet that is in theSYN_SENT state. The internal value of aconnection is slightly different
from the ones used externally withiptables. Thevalue SYN_SENT tells us that we are
lookingat a connection that has only seen a TCP SYN packetin one direction. Next, we see
the source IPaddress, destination IP address,source port and destinationport. At this point
we see a specific keyword that tells us thatwe have seen no return traffic for this connection.
Lastly, wesee what we expect of return packets. The information details thesource IP
address and destination IPaddress (which are both inverted, since the packet isto be directed
back to us). The same thing goes for thesource port and destinationport of the connection.
These are the values that should be ofany interest to us.

 The connection tracking entries may take on a series of different values,all specified in the
conntrack headers available inlinux/include/netfilter-ipv4/ip_conntrack*.h files.These values
are dependent on which sub-protocol ofIP we use. TCP,UDP or ICMP protocolstake specific
default values as specified inlinux/include/netfilter-ipv4/ip_conntrack.h. We willlook closer at
this when we look at each of the protocols; however, wewill not use them extensively through
this chapter, since they are not usedoutside of the conntrack internals. Also, depending on
how this statechanges, the default value of the time until the connection is destroyedwill also
change.

Note
Recently there was a new patch made available in iptables patch-o-matic,called
tcp-window-tracking. This patch adds, among other things, all ofthe above timeouts to special
sysctl variables, which means that they canbe changed on the fly, while the system is still
running. Hence, thismakes it unnecessary to recompile the kernel every time you want to
changethe timeouts.

 These can be altered via using specific system calls available in
the/proc/sys/net/ipv4/netfilter directory. You shouldin particular look at
the/proc/sys/net/ipv4/netfilter/ip_ct_* variables.

http://www.linuxhowtos.org/Security/iptables.pdf

page 17 of 107

 When a connection has seen traffic in both directions, the conntrack entrywill erase the
[UNREPLIED] flag, and thenreset it. The entry tells us that the connection has not seen
anytraffic in both directions, will be replaced by the[ASSURED] flag, to be found close to the
endof the entry. The [ASSURED] flag tells usthat this connection is assured and that it will
not be erased if we reach themaximum possible tracked connections. Thus, connections
marked as[ASSURED] will not be erased, contrary tothe non assured connections (those not
marked as[ASSURED]). How many connections that theconnection tracking table can hold
depends upon a variable that can be setthrough the ip-sysctl functions in recent kernels. The
default value held bythis entry varies heavily depending on how much memory you have. On
128 MB ofRAM you will get 8192 possible entries, and at 256 MB of RAM, you will get16376
entries. You can read and set your settings through the/proc/sys/net/ipv4/ip_conntrack_max
setting.

User-land states
 As you have seen, packets may take on several different states within thekernel itself,
depending on what protocol we are talking about. However,outside the kernel, we only have
the 4 states as described previously. Thesestates can mainly be used in conjunction with the
state match which will thenbe able to match packets based on their current connection
tracking state. Thevalid states are NEW,ESTABLISHED, RELATED andINVALID states. The
following table will briefly explaineach possible state.

TableÂ 4.1.Â User-land states
StateExplanationNEWThe NEW state tells us that the packet isthe first packet that we see.
This means that the first packet that the conntrackmodule sees, within a specific connection,
will be matched. For example, if we see aSYN packet and it is the first packet in a
connectionthat we see, it will match. However, the packet may as well not be aSYN packet
and still be consideredNEW. This may lead to certain problems in some instances,but it may
also be extremely helpful when we need to pick up lost connectionsfrom other firewalls, or
when a connection has already timed out, but inreality is not closed. ESTABLISHEDThe
ESTABLISHED state has seen traffic in bothdirections and will then continuously match
those packets.ESTABLISHED connections are fairly easy to understand. Theonly
requirement to get into an ESTABLISHED state is thatone host sends a packet, and that it
later on gets a reply from the otherhost. The NEW state will upon receipt of the reply packetto
or through the firewall change to the ESTABLISHED state.ICMP error messages and
redirects etc can also beconsidered as ESTABLISHED, if we have generated a packetthat in
turn generated the ICMP message. RELATEDThe RELATED state is one of the more
trickystates. A connection is considered RELATED when it isrelated to another already
ESTABLISHED connection. Whatthis means, is that for a connection to be considered
asRELATED, we must first have a connection that is consideredESTABLISHED. The
ESTABLISHED connectionwill then spawn a connection outside of the main connection. The
newly spawnedconnection will then be considered RELATED, if theconntrack module is able
to understand that it is RELATED.Some good examples of connections that can be
considered asRELATED are the FTP-dataconnections that are considered RELATED to
theFTP control port, and theDCC connections issued throughIRC. This could be used to
allowICMP replies, FTP transfersand DCC's to work properly through the firewall. Donote
that most TCP protocols and someUDP protocols that rely on this mechanism are
quitecomplex and send connection information within the payload of theTCP or UDP data
segments,and hence require special helper modules to be correctly understood.INVALIDThe
INVALID state means that the packet cannot be identified or that it does not have any state.
This may be due toseveral reasons, such as the system running out of memory orICMP error
messages that do not respond to any knownconnections. Generally, it is a good idea to
DROPeverything in this state.

http://www.linuxhowtos.org/Security/iptables.pdf

page 18 of 107

 These states can be used together with the --statematch to match packets based on their
connection tracking state. This is whatmakes the state machine so incredibly strong and
efficient for our firewall.Previously, we often had to open up all ports above 1024 to let all
trafficback into our local networks again. With the state machine in place this isnot necessary
any longer, since we can now just open up the firewall forreturn traffic and not for all kinds of
other traffic.

TCP connections
In this section and the upcoming ones, we will take a closer look at thestates and how they
are handled for each of the three basic protocolsTCP, UDP and ICMP. Also, wewill take a
closer look at how connections are handled per default, if theycan not be classified as either
of these three protocols. We have chosen tostart out with the TCP protocol since it is
astateful protocol in itself, and has a lot of interesting details with regardto the state machine
in iptables.

A TCP connection is always initiated with the 3-wayhandshake, which establishes and
negotiates the actual connection over whichdata will be sent. The whole session is begun
with aSYN packet, then a SYN/ACKpacket and finally an ACK packet to acknowledge
thewhole session establishment. At this point the connection is established andable to start
sending data. The big problem is, how does connection trackinghook up into this? Quite
simply really.

As far as the user is concerned, connection tracking works basically thesame for all
connection types. Have a look at the picturebelow to see exactly what state the stream
enters during the different stagesof the connection. As you can see, the connection tracking
code does notreally follow the flow of the TCP connection, fromthe users viewpoint. Once it
has seen one packet(theSYN), it considers the connection as NEW. Once itsees the return
packet(SYN/ACK), it considers theconnection as ESTABLISHED. If you think about this
asecond, you will understand why. With this particular implementation, you canallow NEW
and ESTABLISHED packets toleave your local network, only allow
ESTABLISHEDconnections back, and that will work perfectly. Conversely, if the
connectiontracking machine were to consider the whole connection establishment asNEW,
we would never really be able to stop outsideconnections to our local network, since we
would have to allowNEW packets back in again. To make things more complicated,there is a
number of other internal states that are used forTCP connections inside the kernel, but which
are notavailable for us in User-land. Roughly, they follow the state standardsspecified within
RFC 793 - Transmission Control Protocol at page 21-23. We will consider these in more
detail further along in this section.

As you can see, it is really quite simple, seen from the user's point of view.However, looking
at the whole construction from the kernel's point of view,it's a little more difficult. Let's look at
an example. Consider exactly howthe connection states change in the/proc/net/ip_conntrack
table. The first state is reportedupon receipt of the first SYN packet in a connection.

tcp 6 117 SYN_SENT src=192.168.1.5 dst=192.168.1.35 sport=1031 \
 dport=23 [UNREPLIED] src=192.168.1.35 dst=192.168.1.5 sport=23 \
 dport=1031 use=1

http://www.linuxhowtos.org/Security/iptables.pdf

page 19 of 107

As you can see from the above entry, we have a precise state in which a SYNpacket has
been sent, (the SYN_SENTflag is set), and to which as yet no reply has been sent (witness
the[UNREPLIED] flag). The next internal statewill be reached when we see another packet in
the other direction.

tcp 6 57 SYN_RECV src=192.168.1.5 dst=192.168.1.35 sport=1031 \
 dport=23 src=192.168.1.35 dst=192.168.1.5 sport=23 dport=1031 \
 use=1

Now we have received a corresponding SYN/ACK inreturn. As soon as this packet has been
received, the state changes onceagain, this time to SYN_RECV.SYN_RECV tells us that the
originalSYN was delivered correctly and that theSYN/ACK return packet also got through the
firewallproperly. Moreover, this connection tracking entry has now seen traffic inboth
directions and is hence considered as having been replied to. This is notexplicit, but rather
assumed, as was the[UNREPLIED] flag above. The final step willbe reached once we have
seen the final ACK in the3-way handshake.

tcp 6 431999 ESTABLISHED src=192.168.1.5 dst=192.168.1.35 \
 sport=1031 dport=23 src=192.168.1.35 dst=192.168.1.5 \
 sport=23 dport=1031 use=1

In the last example, we have gotten the final ACK inthe 3-way handshake and the connection
has entered theESTABLISHED state, as far as the internal mechanisms ofiptables are
aware. After a few more packets, the connection will also become[ASSURED], as shown in
the introductionsection of this chapter.

When a TCP connection is closed down, it is done inthe following way and takes the
following states.

As you can see, the connection is never really closed until the lastACK is sent. Do note that
this picture only describeshow it is closed down under normal circumstances. A connection
may also, forexample, be closed by sending a RST(reset), ifthe connection were to be
refused. In this case, the connection would beclosed down after a predetermined time.

When the TCP connection has been closed down, theconnection enters the TIME_WAIT
state, whichis per default set to 2 minutes. This is used so that all packets that havegotten
out of order can still get through our rule-set, even after theconnection has already closed.
This is used as a kind of buffer time so thatpackets that have gotten stuck in one or another
congested router can stillget to the firewall, or to the other end of the connection.

 If the connection is reset by a RST packet,the state is changed to CLOSE. Thismeans that
the connection per default have 10 seconds before the wholeconnection is definitely closed
down. RST packets arenot acknowledged in any sense, and will break the connection
directly. Thereare also other states than the ones we have told you about so far. Here is
thecomplete list of possible states that a TCP streammay take, and their timeout values.

http://www.linuxhowtos.org/Security/iptables.pdf

page 20 of 107

TableÂ 4.2.Â Internal states
StateTimeout valueNONE30 minutesESTABLISHED5 daysSYN_SENT2
minutesSYN_RECV60 secondsFIN_WAIT2 minutesTIME_WAIT2 minutesCLOSE10
secondsCLOSE_WAIT12 hoursLAST_ACK30 secondsLISTEN>2 minutes

 These values are most definitely not absolute. They may change with kernelrevisions, and
they may also be changed via the proc file-system in
the/proc/sys/net/ipv4/netfilter/ip_ct_tcp_* variables. Thedefault values should, however, be
fairly well established in practice. Thesevalues are set in jiffies (or 1/100th parts of seconds),
so 3000 means 30seconds.

Note
Also note that the User-land side of the state machine does not look atTCP flags set in the
TCPpackets. This is generally bad, since you may want to allow packets in theNEW state to
get through the firewall, but when you specifythe NEW flag, you will in most cases meanSYN
packets.

This is not what happens with the current state implementation; instead, even apacket with
no bit set or an ACK flag, will count asNEW and if you match on NEW packets.This can be
used for redundant firewalling and so on, but it is generallyextremely bad on your home
network, where you only have a single firewall. Toget around this behavior, you could use the
command explained in the State NEW packets but no SYN bit set section of the Common
problems and questions appendix.Another way is to install the tcp-window-tracking
extensionfrom patch-o-matic, which will make the firewall able totrack states depending on
the TCP window settings.

UDP connections
UDP connections are in them selves not statefulconnections, but rather stateless. There are
several reasons why, mainlybecause they don't contain any connection establishment or
connectionclosing; most of all they lack sequencing. Receiving twoUDP datagrams in a
specific order does not sayanything about which order in which they where sent. It is,
however,still possible to set states on the connections within the kernel. Let's havea look at
how a connection can be tracked and how it might look in conntrack.

As you can see, the connection is brought up almost exactly in thesame way as a TCP
connection. That is, from theuser-land point of view. Internally, conntrack information looks
quite a bitdifferent, but intrinsically the details are the same. First of all, let'shave a look at the
entry after the initial UDP packethas been sent.

udp 17 20 src=192.168.1.2 dst=192.168.1.5 sport=137 dport=1025 \
 [UNREPLIED] src=192.168.1.5 dst=192.168.1.2 sport=1025 \
 dport=137 use=1

http://www.linuxhowtos.org/Security/iptables.pdf

page 21 of 107

As you can see from the first and second values, this is anUDP packet. Thefirst is the
protocol name, and the second is protocol number. This is justthe same as for TCP
connections. The third valuemarks how many seconds this state entry has to live. After this,
we get thevalues of the packet that we have seen and the future expectations of packetsover
this connection reaching us from the initiating packet sender. These arethe source,
destination, source port and destination port. At thispoint, the [UNREPLIED] flag tells us
thatthere's so far been no response to the packet. Finally, we get a brief list ofthe
expectations for returning packets. Do note that the latter entries arein reverse order to the
first values. The timeout at thispoint is set to 30 seconds, as per default.

udp 17 170 src=192.168.1.2 dst=192.168.1.5 sport=137 \
 dport=1025 src=192.168.1.5 dst=192.168.1.2 sport=1025 \
 dport=137 use=1

At this point the server has seen a reply to the first packet sent out and theconnection is now
considered as ESTABLISHED. This is notshown in the connection tracking, as you can see.
The main difference is thatthe [UNREPLIED] flag has now gone. Moreover,the default
timeout has changed to 180 seconds - but in this example that'sby now been decremented to
170 seconds - in 10 seconds' time, it will be 160seconds. There's one thing that's missing,
though, and can change a bit, andthat is the [ASSURED] flag described above.For the
[ASSURED] flag to be set on a trackedconnection, there must have been a small amount of
traffic over thatconnection.

udp 17 175 src=192.168.1.5 dst=195.22.79.2 sport=1025 \
 dport=53 src=195.22.79.2 dst=192.168.1.5 sport=53 \
 dport=1025 [ASSURED] use=1

At this point, the connection has become assured. The connection looksexactly the same as
the previous example, except for the[ASSURED] flag. If this connection is notused for 180
seconds, it times out. 180 Seconds is a comparatively low value,but should be sufficient for
most use. This value is reset to its full valuefor each packet that matches the same entry and
passes through the firewall,just the same as for all of the internal states.

ICMP connections
ICMP packets are far from a stateful stream, sincethey are only used for controlling and
should never establish any connections.There are four ICMP types that will generate
returnpackets however, and these have 2 different states. TheseICMP messages can take
the NEW andESTABLISHED states. The ICMP typeswe are talking about are Echo request
andreply, Timestamp request andreply, Information requestand reply and finally Address
maskrequest and reply. Out of these, thetimestamp request and informationrequest are
obsolete and could most probably just be dropped.However, the Echo messages are used in
several setupssuch as pinging hosts. Address mask requests are notused often, but could be
useful at times and worth allowing. To getan idea of how this could look, have a look at the
following image.

http://www.linuxhowtos.org/Security/iptables.pdf

page 22 of 107

As you can see in the above picture, the host sends an echorequest to the target, which is
considered asNEW by the firewall. The target then responds with aecho reply which the
firewall considers as stateESTABLISHED. When the first echo request has been seen,
thefollowing state entry goes into the ip_conntrack.

icmp 1 25 src=192.168.1.6 dst=192.168.1.10 type=8 code=0 \
 id=33029 [UNREPLIED] src=192.168.1.10 dst=192.168.1.6 \
 type=0 code=0 id=33029 use=1

This entry looks a little bit different from the standard states forTCP and UDP as you can
see.The protocol is there, and the timeout, as well as source and destinationaddresses. The
problem comes after that however. We now have 3 new fieldscalled type,code and id.They
are not special in any way, the typefield contains the ICMP type and thecode field contains
theICMP code. These are all available in ICMP types appendix. The finalid field, contains the
ICMPID. Each ICMP packet gets an ID set toit when it is sent, and when the receiver gets
theICMP message, it sets the sameID within the new ICMPmessage so that the sender will
recognize the reply and will be able toconnect it with the correct ICMP request.

The next field, we once again recognize as the[UNREPLIED] flag, which we have seen
before.Just as before, this flag tells us that we are currently looking at aconnection tracking
entry that has seen only traffic in one direction.Finally, we see the reply expectation for the
replyICMP packet, which is the inversion of the originalsource and destination IP addresses.
As for the type and code, these arechanged to the correct values for the return packet, so an
echo request ischanged to echo reply and so on. The ICMP ID ispreserved from the request
packet.

The reply packet is considered as being ESTABLISHED, as wehave already explained.
However, we can know for sure that after theICMP reply, there will be absolutely no more
legaltraffic in the same connection. For this reason, the connection tracking entryis destroyed
once the reply has traveled all the way through the Netfilterstructure.

In each of the above cases, the request is considered asNEW, while the reply is considered
asESTABLISHED. Let's consider this more closely. When thefirewall sees a request packet,
it considers it as NEW.When the host sends a reply packet to the request it is
consideredESTABLISHED.

Note
Note that this means that the reply packet must match the criterion given bythe connection
tracking entry to be considered as established, just as withall other traffic types.

ICMP requests has a default timeout of 30 seconds, which you can change in
the/proc/sys/net/ipv4/netfilter/ip_ct_icmp_timeout entry.This should in general be a good
timeout value, since it will be able to catchmost packets in transit.

Another hugely important part of ICMP is the factthat it is used to tell the hosts what
happened to specificUDP and TCP connections orconnection attempts. For this simple
reason, ICMP replies will very often berecognized as RELATED to original connections
orconnection attempts. A simple example would be theICMP Host unreachable or ICMP
Networkunreachable. These should always be spawned back to our host ifit attempts an
unsuccessful connection to some other host, but the network orhost in question could be
down, and hence the last router trying to reach thesite in question will reply with an ICMP
messagetelling us about it. In this case, the ICMP reply isconsidered as a RELATED packet.
The following pictureshould explain how it would look.

http://www.linuxhowtos.org/Security/iptables.pdf

page 23 of 107

 In the above example, we send out a SYN packet toa specific address. This is considered
as a NEW connectionby the firewall. However, the network the packet is trying to reach
isunreachable, so a router returns a network unreachableICMP error to us. The connection
tracking code canrecognize this packet as RELATED. thanks to the alreadyadded tracking
entry, so the ICMP reply is correctlysent to the client which will then hopefully abort.
Meanwhile, the firewallhas destroyed the connection tracking entry since it knows this was an
errormessage.

The same behavior as above is experienced with UDPconnections if they run into any
problem like the above. AllICMP messages sent in reply toUDP connections are considered
asRELATED. Consider the following image.

This time an UDP packet is sent to the host. ThisUDP connection is considered asNEW.
However, the network is administratively prohibited bysome firewall or router on the way
over. Hence, our firewall receives aICMP Network Prohibited in return. The firewall knowsthat
this ICMP error message is related to thealready opened UDP connection and sends it as
anRELATED packet to the client. At this point, the firewalldestroys the connection tracking
entry, and the client receives theICMP message and should hopefully abort.

Default connections
In certain cases, the conntrack machine does not know how to handle a specificprotocol.
This happens if it does not know about that protocol in particular,or doesn't know how it
works. In these cases, it goes back to a defaultbehavior. The default behavior is used on, for
example,NETBLT, MUX andEGP. This behavior looks pretty much thesame as the UDP
connection tracking. The first packetis considered NEW, and reply traffic and so forth
isconsidered ESTABLISHED.

When the default behavior is used, all of these packets will attain the samedefault timeout
value. This can be set via the/proc/sys/net/ipv4/netfilter/ip_ct_generic_timeoutvariable. The
default value here is 600 seconds, or 10 minutes. Depending onwhat traffic you are trying to
send over a link that uses the defaultconnection tracking behavior, this might need changing.
Especially if you arebouncing traffic through satellites and such, which can take a long time.

Complex protocols and connection tracking
 Certain protocols are more complex than others. What this meanswhen it comes to
connection tracking, is that such protocols may be harderto track correctly. Good examples
of these are theICQ, IRC andFTP protocols. Each and every one of theseprotocols carries
information within the actual data payload of thepackets, and hence requires special
connection tracking helpers to enableit to function correctly.

http://www.linuxhowtos.org/Security/iptables.pdf

page 24 of 107

 Let's take the FTP protocol as thefirst example. The FTP protocol first opens up asingle
connection that is called the FTP controlsession. When we issue commands through this
session, other ports areopened to carry the rest of the data related to that specific
command.These connections can be done in two ways, either actively or passively.When a
connection is done actively, the FTPclient sends the server a port and IP address to connect
to. After this,the FTP client opens up the port and the serverconnects to that specified port
from its own port 20 (known as FTP-Data)and sends the data over it.

 The problem here is that the firewall will not know about theseextra connections, since they
where negotiated within the actual payloadof the protocol data. Because of this, the firewall
will be unable to knowthat it should let the server connect to the client over these
specificports.

 The solution to this problem is to add a special helper to theconnection tracking module
which will scan through the data in the controlconnection for specific syntaxes and
information. When it runs into thecorrect information, it will add that specific information
asRELATED and the server will be able to track theconnection, thanks to that RELATED
entry. Consider thefollowing picture to understand the states when theFTP server has made
the connection back to theclient.

Passive FTP works the opposite way. TheFTP client tells the server that it wants
somespecific data, upon which the server replies with an IP address to connect toand at what
port. The client will, upon receipt of this data, connect to thatspecific port, from its own port
20(the FTP-data port), and get the data inquestion. If you have an FTP server behind
yourfirewall, you will in other words require this module in addition to yourstandard iptables
modules to let clients on the Internet connect to theFTP server properly. The same goes if
you areextremely restrictive to your users, and only want to let them reachHTTP and FTP
servers on theInternet and block all other ports. Consider the following image and itsbearing
on Passive FTP.

 Some conntrack helpers are already available within the kernelitself. More specifically, the
FTP andIRC protocols have conntrack helpers as ofwriting this. If you can not find the
conntrack helpers that you needwithin the kernel itself, you should have a look at
thepatch-o-matic tree within user-land iptables. Thepatch-o-matic tree may contain more
conntrackhelpers, such as for the ntalk orH.323 protocols. If they are not available in
thepatch-o-matic tree, you have a number of options. Either you can look atthe CVS source
of iptables, if it has recently gone into that tree, or youcan contact the Netfilter-develmailing
list and ask if it is available. If it is not, and there are noplans for adding it, you are left to your
own devices and would mostprobably want to read the RustyRussell's Unreliable Netfilter
Hacking HOW-TO which is linked fromthe Other resources and linksappendix.

Conntrack helpers may either be statically compiled into the kernel, or asmodules. If they are
compiled as modules, you can load them with the followingcommand

http://www.linuxhowtos.org/Security/iptables.pdf

page 25 of 107

modprobe ip_conntrack_*

Do note that connection tracking has nothing to do withNAT, and hence you may require
more modules if youare NAT'ing connections as well. For example, if you were to want
toNAT and track FTPconnections, you would need the NAT module as well.All NAT helpers
starts with ip_nat_ and follow thatnaming convention; so for example the FTPNAT helper
would be namedip_nat_ftp and the IRCmodule would be named ip_nat_irc. The
conntrackhelpers follow the same naming convention, and hence theIRC conntrack helper
would be namedip_conntrack_irc, while theFTP conntrack helper would be
namedip_conntrack_ftp.

ChapterÂ 5.Â Saving and restoring large rule-sets

Table of Contents
Speed considerationsDrawbacks with restoreiptables-saveiptables-restore
The iptables package comes with two more tools that are very useful, specially if you are
dealing with larger rule-sets. These two tools are called iptables-save and iptables-restore
and are used to save and restore rule-sets to a specific file-format that looks a quite a bit
different from the standard shell code that you will see in the rest of this tutorial.

Speed considerations
One of the largest reasons for using the iptables-save and iptables-restore commands is that
they will speed up the loading and saving of larger rule-sets considerably. The main problem
with running a shell script that contains iptables rules is that each invocation of iptables
within the script will first extract the whole rule-set from the Netfilter kernel space, and after
this, it will insert or append rules, or do whatever change to the rule-set that isneeded by this
specific command. Finally, it will insert the new rule-set from its own memory into kernel
space. Using a shell script, this is done for each and every rule that we want to insert, and for
each time we do this, it takes more time to extract and insert the rule-set.

To solve this problem, there is the iptables-save and restore commands. The iptables-save
command is used to save the rule-set into a specially formatted text-file, and the
iptables-restore command is used to load this text-file into kernel again. The best parts of
these commands is that they will load and save the rule-set in one single request.
iptables-save will grab the whole rule-set from kernel and save it to a file in one single
movement. iptables-restore will upload that specific rule-set to kernel in a single movement
for each table. In other words, instead of dropping the rule-set out of kernel some 30.000
times, for really large rule-sets, and then upload it to kernel again that many times, we can
now save the whole thing into a file in one movement and then upload the whole thing in as
little as three movements depending on how many tables you use.

As you can understand, these tools are definitely something for you if you are working on a
huge set of rules that needs to be inserted. However, they do have drawbacks that we will
discuss more in the next section.

http://www.linuxhowtos.org/Security/iptables.pdf

page 26 of 107

Drawbacks with restore
As you may have already wondered, can iptables-restore handle any kind of scripting? So
far, no, it can not and it will most probably never be able to. This is the main flaw in using
iptables-restore since you will not be able todo a huge set of things with these files. For
example, what if you have aconnection that has a dynamically assigned IP address and you
want to grab this dynamic IP every-time the computer boots up and then use that value within
your scripts? With iptables-restore, this is more or less impossible.

One possibility to get around this is to make a small script which grabs the values you would
like to use in the script, then sed the iptables-restore file for specific keywords and replace
them with the values collected via the small script. At this point, you could save it to a
temporary file, and then use iptables-restore to load the new values. This causes a lot of
problems however, and you will be unable to use iptables-save properly since it would
probably erase your manually added keywords in the restore script. It is in other words a
clumsy solution.

Another solution is to load the iptables-restore scripts first, and then load a specific shell
script that inserts more dynamic rules in their proper places. Of course, as you can
understand, this is just as clumsy as the first solution. iptables-restore is simply not very well
suited for configurations where IP addresses are dynamically assigned to your firewall or
where you want different behaviors depending on configuration options and so on.

Another drawback with iptables-restore and iptables-save is that it is not fully functional as of
writing this. The problem is simply that not a lot of people use it as of today and hence there
is not a lot of people finding bugs, and in turn some matches and targets will simply be
inserted badly, which may lead to some strange behaviors that you did not expect. Even
though these problems exist, I would highly recommend using these tools which should work
extremely well for most rule-sets as long as they do not contain some of the new targets or
matches that it does not know how to handle properly.

iptables-save
The iptables-save command is, as we have already explained, a tool to save the current
rule-set into a file that iptables-restore can use. This command is quite simple really, and
takes only two arguments. Take a look at the following example to understand the syntax of
the command.

iptables-save [-c] [-t table]

The -c argument tells iptables-save to keep the values specified in the byte and packet
counters. This could for example be useful if we would like to reboot our main firewall, but not
loose byte and packet counters which we may use for statistical purposes. Issuing a
iptables-save command with the -c argument would then make it possible for us to reboot but
without breaking our statistical and accounting routines. The default value is, of course, to not
keep the counters intact when issuing this command.

http://www.linuxhowtos.org/Security/iptables.pdf

page 27 of 107

The -t argument tells the iptables-save command which tables to save. Withoutthis argument
the command will automatically save all tables available into the file. The following is an
example on what output you can expect from the iptables-save command if you do not have
any rule-set loaded.

Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
*filter
:INPUT ACCEPT [404:19766]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [530:43376]
COMMIT
Completed on Wed Apr 24 10:19:17 2002
Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
*mangle
:PREROUTING ACCEPT [451:22060]
:INPUT ACCEPT [451:22060]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [594:47151]
:POSTROUTING ACCEPT [594:47151]
COMMIT
Completed on Wed Apr 24 10:19:17 2002
Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
*nat
:PREROUTING ACCEPT [0:0]
:POSTROUTING ACCEPT [3:450]
:OUTPUT ACCEPT [3:450]
COMMIT
Completed on Wed Apr 24 10:19:17 2002

This contains a few comments starting with a # sign. Each table is marked like
*>table-name>, for example *mangle. Then within each table we have the chain
specifications and rules. A chain specification looks like :>chain-name>
>chain-policy> [>packet-counter>:>byte-counter>]. The chain-name may be
for example PREROUTING, the policy is described previously and can for example be
ACCEPT. Finally the packet-counter and byte-counters are the same counters as in the
output from iptables -L -v. Finally, each table declaration ends in a COMMIT keyword. The
COMMIT keyword tells us that at this point we should commit all rules currently in the
pipeline to kernel.

The above example is pretty basic, and hence I believe it is nothing morethan proper to show
a brief example which contains a very small Iptables-save ruleset. If we would run
iptables-save on this, it would look something like this in the output:

Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
*filter
:INPUT DROP [1:229]
:FORWARD DROP [0:0]
:OUTPUT DROP [0:0]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i eth1 -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT
-A OUTPUT -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT
COMMIT
Completed on Wed Apr 24 10:19:55 2002
Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
*mangle
:PREROUTING ACCEPT [658:32445]
:INPUT ACCEPT [658:32445]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [891:68234]
:POSTROUTING ACCEPT [891:68234]
COMMIT
Completed on Wed Apr 24 10:19:55 2002
Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
*nat
:PREROUTING ACCEPT [1:229]
:POSTROUTING ACCEPT [3:450]
:OUTPUT ACCEPT [3:450]
-A POSTROUTING -o eth0 -j SNAT --to-source 195.233.192.1
COMMIT
Completed on Wed Apr 24 10:19:55 2002

http://www.linuxhowtos.org/Security/iptables.pdf

page 28 of 107

As you can see, each command has now been prefixed with the byte and packet counters
since we used the -c argument. Except for this, the command-line is quite intact from the
script. The only problem now, is how to save the output to a file. Quite simple, and you
should already know how to do this if you have used linux at all before. It is only a matter of
piping the command output on to the file that you would like to save it as. This could look like
the following:

 iptables-save -c > /etc/iptables-save
The above command will in other words save the whole rule-set to a file called
/etc/iptables-save with byte and packet counters still intact.

iptables-restore
The iptables-restore command is used to restore the iptables rule-set that was saved with the
iptables-save command. It takes all the input from standard input and can not load from files
as of writing this, unfortunately. This is the command syntax for iptables-restore:

iptables-restore [-c] [-n]

The -c argument restores the byte and packet counters and must be used if you want to
restore counters that was previously saved with iptables-save. This argument may also be
written in its long form --counters.

The -n argument tells iptables-restore to not overwrite the previously written rules in the
table, or tables, that it is writing to. The default behavior of iptables-restore is to flush and
destroy all previously inserted rules. The short -n argument may also be replaced with the
longer format --noflush.

To load rule-set with the iptables-restore command, we could do this in several ways, but we
will mainly look at the simplest and most common way here.

 cat /etc/iptables-save | iptables-restore -c
This would cat the rule-set located within the /etc/iptables-save file and then pipe it to
iptables-restore which takes the rule-set on the standard input and then restores it, including
byte and packet counters. It is that simple to begin with. This command could be varied until
oblivion and we could show different piping possibilities, however, this is a bit out of the
scope of this chapter, and hence we will skip that part and leave it as an exercise for the
reader to experiment with.

The rule-set should now be loaded properly to kernel and everything should work. If not, you
may possibly have run into a bug in these commands, however likely that sounds.

ChapterÂ 6.Â How a rule is built

Table of Contents
BasicsTablesCommandsMatchesGeneric matchesImplicit matchesExplicit matchesUnclean
matchTargets/JumpsACCEPT targetDNAT targetDROP targetLOG targetMARK
targetMASQUERADE targetMIRROR targetQUEUE targetREDIRECT targetREJECT
targetRETURN targetSNAT targetTOS targetTTL targetULOG target

http://www.linuxhowtos.org/Security/iptables.pdf

page 29 of 107

This chapter will discuss at length how to build your own rules. A rule couldbe described as
the directions the firewall will adhere to when blocking orpermitting different connections and
packets in a specific chain. Each lineyou write that's inserted to a chain should be considered
a rule. We will alsodiscuss the basic matches that are available, and how to use them, as
well asthe different targets and how we can construct new targets of our own (i.e.,new sub
chains).

Basics
As we have already explained, each rule is a line that the kernel looks at tofind out what to do
with a packet. If all the criteria - or matches - are met,we perform the target - or jump -
instruction. Normally we would write ourrules in a syntax that looks something like this:

iptables [-t table] command [match] [target/jump]

There is nothing that says that the target instruction has to be last functionin the line.
However, you would usually adhere to this syntax to get the bestreadability. Anyway, most of
the rules you'll see are written in this way.Hence, if you read someone else's script, you'll
most likely recognize thesyntax and easily understand the rule.

If you want to use another table than the standard table, you could insertthe table
specification at the point at which [table] is specified. However,it is not necessary to state
explicitly what table to use, since by defaultiptables uses the filter table onwhich to implement
all commands. Neither do you have to specify the table atjust this point in the rule. It could be
set pretty much anywhere along theline. However, it is more or less standard to put the table
specification atthe beginning.

One thing to think about though: The command should always come first, oralternatively
directly after the table specification. We use 'command' to tellthe program what to do, for
example to insert a rule or to add a rule to theend of the chain, or to delete a rule. We shall
take a further look at thisbelow.

The match is the part of the rule that we send to the kernel that details thespecific character
of the packet, what makes it different from all otherpackets. Here we could specify what IP
address the packet comes from, fromwhich network interface, the intended IP address, port,
protocol or whatever.There is a heap of different matches that we can use that we will look
closerat further on in this chapter.

Finally we have the target of the packet. If all the matches are met for apacket, we tell the
kernel what to do with it. We could, for example, tell thekernel to send the packet to another
chain that we've created ourselves, andwhich is part of this particular table. We could tell the
kernel to drop thepacket dead and do no further processing, or we could tell the kernel to
senda specified reply to the sender. As with the rest of the content in thissection, we'll look
closer at it further on in the chapter.

Tables
The -t option specifies which table to use. Per default, thefilter table is used. We may specify
one of thefollowing tables with the -t option. Do note that this is anextremely brief summary of
some of the contents of the Traversing of tables and chainschapter.

http://www.linuxhowtos.org/Security/iptables.pdf

page 30 of 107

TableÂ 6.1.Â Tables
TableExplanationnatThe nat table is used mainly forNetwork Address Translation."NAT"ed
packets get their IP addresses altered,according to our rules. Packets in a stream only
traverse this table once. Weassume that the first packet of a stream is allowed. The rest of
thepackets in the same stream are automatically "NAT"edor Masqueraded etc, and will be
subject to the same actions as the firstpacket. These will, in other words, not go through
this table again, butwill nevertheless be treated like the first packet in the stream. This isthe
main reason why you should not do any filtering in this table, whichwe will discuss at
greater length further on. ThePREROUTING chain is used to alter packets as soon asthey
get in to the firewall. The OUTPUT chain is usedfor altering locally generated packets (i.e.,
on the firewall) before they getto the routing decision. Finally we have thePOSTROUTING
chain which is used to alter packets justas they are about to leave the firewall.mangleThis
table is used mainly for mangling packets. Among otherthings, we can change the contents
of different packets and that of theirheaders. Examples of this would be to change the
TTL,TOS or MARK. Note that theMARK is not really a change to the packet, but a mark
valuefor the packet is set in kernel space. Other rules or programs might use thismark further
along in the firewall to filter or do advanced routing on; tc isone example. The table consists
of five built in chains, thePREROUTING, POSTROUTING, OUTPUT, INPUT and FORWARD
chains. PREROUTINGis used for altering packets just as they enter the firewall and before
theyhit the routing decision. POSTROUTING is used tomangle packets just after all routing
decisions has been made.OUTPUT is used for altering locally generatedpackets before they
enter the routing decision. INPUT
is used to alter packets after they have been routed to the local computer itself, but before
the user space application actually sees the data. FORWARD is used to mangle packets
after they have hit
the first routing decision, but before they actually hit the last routing decision. Note that
mangle can not be used for any kind of NetworkAddress Translation or Masquerading, thenat
table was made for these kinds of operations.filterThe filter table should be usedexclusively
for filtering packets. For example, we couldDROP, LOG, ACCEPT orREJECT packets
without problems, as we can in the othertables. There are three chains built in to this table.
The first one is namedFORWARD and is used on all non-locally generatedpackets that are
not destined for our local host (the firewall, in otherwords). INPUT is used on all packets that
aredestined for our local host (the firewall) and OUTPUTis finally used for all locally
generated packets.

The above details should have explained the basics about the threedifferent tables that are
available. They should be used for totally differentpurposes, and you should know what to
use each chain for. If you do notunderstand their usage, you may well dig a pit for yourself in
your firewall,into which you will fall as soon as someone finds it and pushes you into it.We
have already discussed the requisite tables and chains in more detailwithin the Traversing of
tables and chains chapter. If you do not understandthis fully, I advise you to go back and
read through it again.

Commands
In this section we will cover all the different commands and what can be donewith them. The
command tells iptables what to do with therest of the rule that we send to the parser.
Normally we would want either toadd or delete something in some table or another. The
following commands areavailable to iptables:

http://www.linuxhowtos.org/Security/iptables.pdf

page 31 of 107

TableÂ 6.2.Â Commands
Command-A, --appendExampleiptables -A INPUT ...ExplanationThis command appends the
rule to the end of thechain. The rule will in other words always be put last in the rule-set
andhence be checked last, unless you append more rules later on.Command-D,
--deleteExample iptables -D INPUT --dport 80 -j DROP, iptables -D INPUT 1
ExplanationThis command deletes a rule in a chain. This could be donein two ways; either by
entering the whole rule to match (as in the firstexample), or by specifying the rule number
that you want to match. If you usethe first method, your entry must match the entry in the
chain exactly. If youuse the second method, you must match the number of the rule you want
todelete. The rules are numbered from the top of each chain, starting withnumber
1.Command-R, --replaceExampleiptables -R INPUT 1 -s 192.168.0.1
-jDROPExplanationThis command replaces the old entry at the specified line. Itworks in the
same way as the --delete command, but instead oftotally deleting the entry, it will replace it
with a new entry. The main usefor this might be while you're experimenting with
iptables.Command-I, --insertExampleiptables -I INPUT 1 --dport 80
-jACCEPTExplanationInsert a rule somewhere in a chain. The rule is inserted asthe actual
number that we specify. In other words, the above example would beinserted as rule 1 in the
INPUT chain, and hence fromnow on it would be the very first rule in the chain.
Command-L, --listExampleiptables -L INPUTExplanationThis command lists all the entries in
the specified chain.In the above case, we would list all the entries in theINPUT chain. It's also
legal to not specify any chainat all. In the last case, the command would list all the chains in
the specifiedtable (To specify a table, see the Tables section). The exact output is affected
byother options sent to the parser, for example the -n and-v options, etc.Command-F,
--flushExampleiptables -F INPUTExplanationThis command flushes all rules from the
specified chain and isequivalent to deleting each rule one by one, but is quite a bit faster.
Thecommand can be used without options, and will then delete all rules in allchains within
the specified table.
Command-Z, --zeroExampleiptables -Z INPUTExplanationThis command tells the program to
zero all counters in aspecific chain, or in all chains. If you have used the -voption with the -L
command, you have probably seen thepacket counter at the beginning of each field. To zero
this packet counter,use the -Z option. This option works the same as-L, except that -Z won't
list the rules.If -L and -Z is used together (which islegal), the chains will first be listed, and
then the packet counters arezeroed.Command-N, --new-chainExampleiptables -N
allowedExplanationThis command tells the kernel to create a new chain of thespecified name
in the specified table. In the above example we create achain called allowed. Note that there
must not already be achain or target of the same name.Command-X,
--delete-chainExampleiptables -X allowedExplanationThis command deletes the specified
chain from the table. Forthis command to work, there must be no rules that refer to the chain
that isto be deleted. In other words, you would have to replace or delete all rulesreferring to
the chain before actually deleting the chain. If this command isused without any options, all
chains but those built in to the specified tablewill be deleted.Command-P,
--policyExampleiptables -P INPUT DROPExplanationThis command tells the kernel to set a
specified defaulttarget, or policy, on a chain. All packets that don't match any rule willthen be
forced to use the policy of the chain. Legal targets areDROP and ACCEPT(There might be
more, mail me if so).Command-E, --rename-chainExampleiptables -E allowed
disallowedExplanationThe -E command tellsiptables to change the first name of a chain, to
the secondname. In the example above we would, in other words, change the name of
thechain from allowed to disallowed. Notethat this will not affect the actual way the table will
work. It is, in otherwords, just a cosmetic change to the table.

http://www.linuxhowtos.org/Security/iptables.pdf

page 32 of 107

You should always enter a complete command line, unless you just wantto list the built-in
help for iptables or get the version of thecommand. To get the version, use the -v option and
to get the helpmessage, use the -h option. As usual, in other words. Nextcomes a few
options that can be used with various different commands. Notethat we tell you with which
commands the options can be used and what effectthey will have. Also note that we do not
include any options here thataffect rules or matches. Instead, we'll take a look at matches
andtargets in a later section of this chapter.

TableÂ 6.3.Â Options
Option-v, --verboseCommands used with--list, --append,--insert,
--delete,--replaceExplanationThis command gives verbose output and is mainlyused together
with the --list command. If used together withthe --list command, it outputs the interface
address, ruleoptions and TOS masks. The --list command will also includea bytes and packet
counter for each rule, if the --verboseoption is set. These counters uses the K (x1000), M
(x1,000,000) and G(x1,000,000,000) multipliers. To overrule this and get exact output,
youcan use the -x option, described later. If this option isused with the --append,
--insert,--delete or --replace commands, theprogram will output detailed information on how
the rule was interpreted andwhether it was inserted correctly, etc.Option-x,
--exactCommands used with--listExplanationThis option expands the numerics. The output
from--list will in other words not contain the K, M or Gmultipliers. Instead we will get an exact
output from the packet and bytecounters of how many packets and bytes that have matched
the rule in question.Note that this option is only usable in the --list commandand isn't really
relevant for any of the other commands.Option-n, --numericCommands used
with--listExplanationThis option tells iptables to output numericalvalues. IP addresses and
port numbers will be printed by using theirnumerical values and not host-names, network
names or application names.This option is only applicable to the --list command. Thisoption
overrides the default of resolving all numerics to hosts and names,where this is
possible.Option--line-numbersCommands used with--listExplanationThe --line-numbers
command, together withthe --list command, is used to output line numbers. Usingthis option,
each rule is output with its number. It could be convenient toknow which rule has which
number when inserting rules. This option only workswith the --list command.Option-c,
--set-countersCommands used with--insert, --append,--replaceExplanationThis option is used
when creating a rule or modifying it insome way. We can then use the option to initialize the
packet and bytecounters for the rule. The syntax would be something like--set-counters 20
4000, which would tell the kernel to setthe packet counter to 20 and byte counter to
4000.Option--modprobeCommands used withAllExplanationThe --modprobe option is used
to telliptables which module to use when probing for modules oradding them to the kernel. It
could be used if yourmodprobe command is not somewhere in the search path etc.In such
cases, it might be necessary to specify this option so the programknows what to do in case a
needed module is not loaded. This option can beused with all commands.

Matches
In this section we'll talk a bit more about matches. I've chosen tonarrow down the matches
into five different subcategories. First of all wehave the generic matches, which can be used
in all rules.Then we have the TCP matches which can only be applied toTCP packets. We
have UDP matcheswhich can only be applied to UDP packets, andICMP matches which can
only be used onICMP packets. Finally we have special matches, suchas the state, owner and
limit matches and so on. These final matches have inturn been narrowed down to even more
subcategories, even though they mightnot necessarily be different matches at all. I hope this
is a reasonablebreakdown and that all people out there can understand it.

http://www.linuxhowtos.org/Security/iptables.pdf

page 33 of 107

Generic matches

This section will deal with Generic matches. Ageneric match is a kind of match that is always
available, whatever kind ofprotocol we are working on, or whatever match extensions we
have loaded. Nospecial parameters at all are needed to use these matches; in other words.
Ihave also included the --protocol match here, even thoughit is more specific to protocol
matches. For example, if we want to use aTCP match, we need to use the--protocol match
and send TCP asan option to the match. However, --protocol is also a matchin itself, since it
can be used to match specific protocols. The followingmatches are always available.

TableÂ 6.4.Â Generic matches
Match-p, --protocolExampleiptables -A INPUT -p tcpExplanationThis match is used to check
for certain protocols.Examples of protocols are TCP,UDP and ICMP. The protocol must
either be one of the internally specified TCP, UDP or ICMP. It may also take a value
specified in the /etc/protocols file, and if it can not find the protocol there it will reply with an
error. The protocl may also be a integer value. For example, the ICMP protocol is integer
value 1, TCP is 6 and UDP is 17. Finally, it may also take the value ALL. ALL means that it
matches only TCP, UDP and ICMP. The command may also take a comma delimited list of
protocols, such as udp,tcp which would match allUDP and TCP packets. If thismatch is given
the integer value of zero (0), it means ALL protocols, which inturn is the default behavior, if
the --protocol match isnot used. This match can also be inversed with the ! sign,so --protocol
! tcp would mean to match UDP and ICMP. Match-s, --src,--sourceExampleiptables -A
INPUT -s 192.168.1.1ExplanationThis is the source match, which is used to match
packets,based on their source IP address. The main form can be used to match single
IPaddresses, such as 192.168.1.1. It could also be usedwith a netmask in a CIDR "bit" form,
by specifying the number of ones (1's) onthe left side of the network mask. This means that
we could for example add/24 to use a 255.255.255.0 netmask.We could then match whole IP
ranges, such as our local networks or networksegments behind the firewall. The line would
then look something like192.168.0.0/24. This would match all packets in the192.168.0.x
range. Another way is to do it with anregular netmask in the 255.255.255.255 form
(i.e.,192.168.0.0/255.255.255.0). We could also invert thematch with an ! just as before. If we
were in other wordsto use a match in the form of --source ! 192.168.0.0/24, wewould match
all packets with a source address not coming from within the192.168.0.x range. The default
is to match all IPaddresses.Match-d, --dst,--destinationExampleiptables -A INPUT -d
192.168.1.1ExplanationThe --destination match is used for packetsbased on their destination
address or addresses. It works pretty much the sameas the --source match and has the
same syntax, except thatthe match is based on where the packets are going to. To match an
IP range, wecan add a netmask either in the exact netmask form, or in the number of
ones(1's) counted from the left side of the netmask bits. Examples
are:192.168.0.0/255.255.255.0 and192.168.0.0/24. Both of these are equivalent. We
couldalso invert the whole match with an ! sign, just as before.--destination ! 192.168.0.1
would in other words match allpackets except those not destined to the 192.168.0.1
IPaddress.Match-i, --in-interfaceExampleiptables -A INPUT -i eth0ExplanationThis match is
used for the interface the packet came in on.Note that this option is only legal in the
INPUT,FORWARD and PREROUTINGchains and will return an error message when used
anywhere else. The defaultbehavior of this match, if no particular interface is specified, is to
assumea string value of +. The + value is usedto match a string of letters and numbers. A
single + wouldin other words tell the kernel to match all packets without considering
whichinterface it came in on. The + string can also be appendedto the type of interface, so
eth+ would all Ethernetdevices. We can also invert the meaning of this option with the help of
the! sign. The line would then have a syntax looking somethinglike -i ! eth0, which would
match all incoming interfaces,except eth0.Match-o, --out-interfaceExampleiptables -A
FORWARD -o eth0ExplanationThe --out-interface match is used forpackets on the interface
from which they are leaving. Note that this match isonly available in the OUTPUT,FORWARD
and POSTROUTINGchains, the opposite in fact of the --in-interface match.Other than this, it
works pretty much the same as the--in-interface match. The + extension isunderstood as
matching all devices of similar type, so eth+would match all eth devices and so on. To invert
themeaning of the match, you can use the ! sign in exactly thesame way as for the
--in-interface match. If no--out-interface is specified, the default behavior for thismatch is to
match all devices, regardless of where the packet is going.Match-f,
--fragmentExampleiptables -A INPUT -fExplanationThis match is used to match the second
and third part of afragmented packet. The reason for this is that in the case of
fragmentedpackets, there is no way to tell the source or destination ports of thefragments,
nor ICMP types, among other things. Also,fragmented packets might in rather special cases
be used to compound attacks againstother computers. Packet fragments like this will not be
matched by other rules, andhence this match was created. This option can also be used in
conjunction withthe ! sign; however, in this case the !sign must precede the match, i.e. ! -f.
When this match isinverted, we match all header fragments and/or unfragmented packets.
What thismeans, is that we match all the first fragments of fragmented packets, andnot the
second, third, and so on. We also match all packets that have not beenfragmented during
transfer. Note also that there are really gooddefragmentation options within the kernel that
you can use instead. As asecondary note, if you use connection tracking you will not see
anyfragmented packets, since they are dealt with before hitting any chain ortable in iptables.

http://www.linuxhowtos.org/Security/iptables.pdf

page 34 of 107

Implicit matches

This section will describe the matches that are loadedimplicitly. Implicit matches are implied,
taken forgranted, automatic. For example when we match on --protocoltcp without any further
criteria. There are currently three types ofimplicit matches for three different protocols. These
are TCPmatches, UDP matches and ICMPmatches. The TCP based matches contain aset of
unique criteria that are available only forTCP packets. UDP basedmatches contain another
set of criteria that are available only forUDP packets. And the same thing forICMP packets.
On the other hand, there can beexplicit matches that are loaded explicitly. Explicitmatches
are not implied or automatic, you have to specify themspecifically. For these you use the -m
or--match option, which we will discuss in the next section.

TCP matches

 These matches are protocol specific and are only available whenworking with TCP packets
and streams. To use thesematches, you need to specify --protocol tcp on the commandline
before trying to use them. Note that the --protocoltcp match must be to the left of the protocol
specific matches.These matches are loaded implicitly in a sense, just as theUDP and ICMP
matches are loadedimplicitly. The other matches will be looked over in the continuation of
thissection, after the TCP match section.

TableÂ 6.5.Â TCP matches
Match--sport,--source-portExampleiptables -A INPUT -p tcp --sport 22ExplanationThe
--source-port match is used to matchpackets based on their source port. Without it, we imply
all source ports.This match can either take a service name or a port number. If you specify
aservice name, the service name must be in the /etc/services file, sinceiptables uses this file
in which to find. If you specifythe port by its number, the rule will load slightly faster,
sinceiptables don't have to check up the service name. However,the match might be a little
bit harder to read than if you use the servicename. If you are writing a rule-set consisting of a
200 rules or more, youshould definitely use port numbers, since the difference is
reallynoticeable. (On a slow box, this could make as much as 10 seconds'difference, if you
have configured a large rule-set containing 1000rules or so). You can also use the
--source-port match tomatch any range of ports, --source-port 22:80 for example.This
example would match all source ports between 22 and 80. If you omitspecifying the first port,
port 0 is assumed (is implicit).--source-port :80 would then match port 0 through 80. Andif the
last port specification is omitted, port 65535 is assumed. If you wereto write --source-port 22:,
you would have specified amatch for all ports from port 22 through port 65535. If you invert
the portrange, iptables automatically reverses your inversion. If you write--source-port 80:22,
it is simply interpreted as--source-port 22:80. You can also invert a match by addinga ! sign.
For example, --source-port !22 means that you want to match all ports but port 22. The
inversioncould also be used together with a port range and would then look like--source-port !
22:80, which in turn would mean that youwant to match all ports but port 22 through 80. Note
that this match does nothandle multiple separated ports and port ranges. For more
information aboutthose, look at the multiport match
extension.Match--dport,--destination-portExampleiptables -A INPUT -p tcp --dport
22ExplanationThis match is used to match TCPpackets, according to their destination port. It
uses exactly the same syntaxas the --source-port match. It understands port and portrange
specifications, as well as inversions. It also reverses high and lowports in port range
specifications, as above. The match will also assumevalues of 0 and 65535 if the high or low
port is left out in a port rangespecification. In other words, exactly the same as
the--source-port syntax. Note that this match does not handlemultiple separated ports and
port ranges. For more information about those,look at the multiport match
extension.Match--tcp-flagsExampleiptables -p tcp --tcp-flags
SYN,FIN,ACKSYNExplanationThis match is used to match on theTCP flags in a packet. First
of all, the matchtakes a list of flags to compare (a mask) and secondly it takes list offlags that
should be set to 1, or turned on. Both lists should becomma-delimited. The match knows
about the SYN,ACK, FIN,RST, URG,PSH flags, and it also recognizes the words ALLand
NONE. ALL and NONE is pretty much self describing: ALL means to useall flags and NONE
means to use no flags for the option.--tcp-flags ALL NONE would in other words mean to
checkall of the TCP flags and match if none of theflags are set. This option can also be
inverted with the! sign. For example, if we specify! SYN,FIN,ACK SYN, we would get a match
that would matchpackets that had the ACK andFIN bits set, but not theSYN bit. Also note that
the comma delimitationshould not include spaces. You can see the correct syntax in the
exampleabove.Match--synExampleiptables -p tcp --synExplanationThe --syn match is more
or less an old relicfrom the ipchains days and is still there for backward compatibility and
forand to make transition one to the other easier. It is used to match packets ifthey have the
SYN bit set and theACK and RST bits unset. Thiscommand would in other words be exactly
the same as the --tcp-flagsSYN,RST,ACK SYN match. Such packets are mainly used to
requestnew TCP connections from a server. If you block thesepackets, you should have
effectively blocked all incoming connection attempts.However, you will not have blocked the
outgoing connections, which a lot ofexploits today use (for example, hacking a legitimate
service and theninstalling a program or suchlike that enables initiating an existingconnection
to your host, instead of opening up a new port on it). This matchcan also be inverted with the
! sign in this, !--syn, way. This would match all packets with theRST or the ACK bits set,
inother words packets in an already established
connection.Match--tcp-optionExampleiptables -p tcp --tcp-option 16ExplanationThis match is
used to match packets depending ontheir TCP options. A TCPOption is a specific part of the
header. This part consists of 3different fields. The first one is 8 bits long and tells us which
Options areused in this stream, the second one is also 8 bits long and tells us how longthe
options field is. The reason for this length field is thatTCP options are, well, optional. To be
compliant withthe standards, we do not need to implement all options, but instead we canjust
look at what kind of option it is, and if we do not support it, we justlook at the length field and
can then jump over this data. This match is usedto match different TCP options depending
on theirdecimal values. It may also be inverted with the ! flag, sothat the match matches all
TCP options but the optiongiven to the match. For a complete list of all options, take a closer
look atthe Internet Engineering Task Forcewho maintains a list of all the standard numbers
used on the Internet.

http://www.linuxhowtos.org/Security/iptables.pdf

page 35 of 107

UDP matches

 This section describes matches that will only work togetherwith UDP packets. These
matches are implicitlyloaded when you specify the --protocol UDP match andwill be available
after this specification. Note thatUDP packets are not connection oriented, andhence there is
no such thing as different flags to set in the packet togive data on what the datagram is
supposed to do, such as open or closinga connection, or if they are just simply supposed to
send data.UDP packets do not require any kind ofacknowledgment either. If they are lost,
they are simply lost (Not takingICMP error messaging etc into account). Thismeans that there
are quite a lot less matches to work with on aUDP packet than there is onTCP packets. Note
that the state machine willwork on all kinds of packets even though UDP orICMP packets are
counted as connectionlessprotocols. The state machine works pretty much the same onUDP
packets as on TCPpackets.

TableÂ 6.6.Â UDP matches
Match--sport,--source-portExampleiptables -A INPUT -p udp --sport 53ExplanationThis
match works exactly the same as itsTCP counterpart. It is used to perform matches
onpackets based on their source UDP ports. It has supportfor port ranges, single ports and
port inversions with the same syntax. Tospecify a UDP port range, you could use 22:80
whichwould match UDP ports 22 through 80. If the firstvalue is omitted, port 0 is assumed. If
the last port is omitted, port 65535is assumed. If the high port comes before the low port, the
ports switch placewith each other automatically. Single UDP portmatches look as in the
example above. To invert the port match, add a! sign, --source-port ! 53. This wouldmatch all
ports but port 53. The match can understand service names, as longas they are available in
the /etc/services file. Note that this match does nothandle multiple separated ports and port
ranges. For more information aboutthis, look at the multiport match
extension.Match--dport,--destination-portExampleiptables -A INPUT -p udp --dport
53ExplanationThe same goes for this match as for--source-port above. It is exactly the same
as for theequivalent TCP match, but here it applies toUDP packets. It matches packets
based on theirUDP destination port. The match handles port ranges,single ports and
inversions. To match a single port you use, for example,--destination-port 53, to invert this
you would use--destination-port ! 53. The first would match allUDP packets going to port 53
while the second wouldmatch packets but those going to the destination port 53. To specify a
portrange, you would, for example, use --destination-port 9:19.This example would match all
packets destined for UDPport 9 through 19. If the first port is omitted, port 0 is assumed. If
thesecond port is omitted, port 65535 is assumed. If the high port is placedbefore the low
port, they automatically switch place, so the low port winds upbefore the high port. Note that
this match does not handle multiple ports andport ranges. For more information about this,
look at the multiport matchextension.

ICMP matches

 These are the ICMP matches. These packets areeven more ephemeral, that is to say short
lived, thanUDP packets, in the sense that they areconnectionless. The ICMP protocol is
mainly used forerror reporting and for connection controlling and suchlike.ICMP is not a
protocol subordinated to the IPprotocol,but more of a protocol that augments the IP protocol
and helps in handlingerrors. The headers of ICMP packets are very similarto those of the IP
headers, but differ in a number of ways. The main featureof this protocol is the type header,
that tells us what the packet is for. Oneexample is, if we try to access an unaccessible IP
address, we would normallyget an ICMP host unreachable in return. For acomplete listing of
ICMP types, see the ICMP types appendix. There is onlyone ICMP specific match available
forICMP packets, and hopefully this should suffice. Thismatch is implicitly loaded when we
use the --protocol ICMPmatch and we get access to it automatically. Note that all the generic
matchescan also be used, so that among other things we can match on the source
anddestination addresses.

http://www.linuxhowtos.org/Security/iptables.pdf

page 36 of 107

TableÂ 6.7.Â ICMP matches
Match--icmp-typeExampleiptables -A INPUT -p icmp --icmp-type8ExplanationThis match is
used to specify the ICMPtype to match. ICMP types can bespecifiedeither by their numeric
values or by their names. Numerical values arespecifiedin RFC 792. To find a complete
listing of the ICMPnamevalues, do an iptables --protocol icmp --help, or check theICMP types
appendix. Thismatch can also be inverted with the ! sign in this,--icmp-type ! 8, fashion. Note
that some ICMPtypes are obsolete, and others again may be "dangerous" for anunprotected
host since they may, among other things, redirect packets to thewrong places.

Explicit matches

Explicit matches are those that have to be specifically loaded withthe -m or --match option.
Statematches, for example, demand the directive -m state priorto entering the actual match
that you want to use. Some of these matches maybe protocol specific . Some may be
unconnected with any specific protocol -for example connection states. These might be NEW
(thefirst packet of an as yet unestablished connection),ESTABLISHED (a connection that is
already registered in thekernel), RELATED (a new connection that was created by anolder,
established one) etc. A few may just have been evolved for testing orexperimental purposes,
or just to illustrate what iptables is capable of. Thisin turn means that not all of these matches
may at first sight be of any use.Nevertheless, it may well be that you personally will find a use
for specificexplicit matches. And there are new ones coming along all the time, with eachnew
iptables release. Whether you find a use for them ornot depends on your imagination and
your needs. The difference betweenimplicitly loaded matches and explicitly loaded ones, is
that the implicitlyloaded matches will automatically be loaded when, for example, you match
onthe properties of TCP packets, while explicitlyloaded matches will never be loaded
automatically - it is up to you todiscover and activate explicit matches.

Limit match

 The limit match extension must be loadedexplicitly with the -m limit option. This match
can,for example, be used to advantage to give limited logging of specificrules etc. For
example, you could use this to match all packets that doesnot exceed a given value, and
after this value has been exceeded,limit logging of the event in question. Think of a timelimit :
You could limit how many times a certain rule may be matched in acertain time frame, for
example to lessen the effects ofDoS syn flood attacks. This is its main usage, butthere are
more usages, of course. The limit match mayalso be inverted by adding a ! flag in front of
thelimit match. It would then be expressed as -m limit !--limit 5/s.This means that all packets
will be matched after they have broken thelimit.

 To further explain the limit match, it is basically a tokenbucket filter. Consider having a leaky
bucket where the bucket leaks Xpackets per time-unit. X is defined depending on how many
matching packetswe get, so if we get 3 packets, the bucket leaks 3 packets per thattime-unit.
The --limit option tells us how many packetsto refill the bucket with per time-unit, while
the--limit-burst option tells us how big the bucket is inthe first place. So, setting --limit
3/minute --limit-burst5, and then receiving 5 matches will empty the bucket. After 20seconds,
the bucket is refilled with another token, and so on until the--limit-burst is reached again or
until they get used.

http://www.linuxhowtos.org/Security/iptables.pdf

page 37 of 107

Consider the example below for further explanation of how this may look.		
* 			We set a rule with -m limit --limit 5/second --limit-burst 10/second.The limit-burst token bucket

is set to 10 initially. Each packet that matchesthe rule uses a token.			

* We get packet that matches, 1-2-3-4-5-6-7-8-9-10, all within a 1/1000 of a second.			
* The token bucket is now empty. Once the token bucket is empty, the packetsthat qualify for

the rule otherwise no longer match the rule and proceed tothe next rule if any, or hit the chain
policy.			

* For each 1/5 s without a matching packet, the token count goes up by 1, upto amaximum of
10. 1 second after receiving the 10 packets, we will once again have5 tokens left.			

* And of course, the bucket will be emptied by 1 token for each packet it receives.			

TableÂ 6.8.Â Limit match options
Match--limitExampleiptables -A INPUT -m limit --limit3/hourExplanationThis sets the
maximum average match rate for thelimit match. You specify it with a number and an
optionaltime unit. The following time units are currently recognized:/second /minute
/hour/day. The default value here is 3 per hour, or3/hour. This tells the limit match howmany
times to allow the match to occur per time unit (e.g.
perminute).Match--limit-burstExampleiptables -A INPUT -m limit --limit-burst5ExplanationThis
is the setting for the burstlimit of the limit match. It tellsiptables the maximum number of
packets to match within thegiven time unit. This number gets decremented by one for every
time unit(specified by the --limit option) in which the event doesnot occur, back down to the
lowest possible value, 1. If the event isrepeated, the counter is again incremented, until the
count reaches the burstlimit. And so on. The default --limit-burst value is 5. Fora simple way
of checking out how this works, you can use the example Limit-match.txt one-rule-script.
Using this script, you can see for yourself how the limit rule works, by simply sending ping
packets at different intervals and in different burst numbers. All echo replies will be blocked
until the threshold for the burst limit has again been reached.

MAC match

The MAC (Ethernet MediaAccess Control) match can be used to match packets based on
theirMAC source address. As of writing this documentation,this match is a little bit limited,
however, in the future this may be moreevolved and may be more useful. This match can be
used to match packets on thesource MAC address only as previously said.

Note
Do note that to use this module we explicitly load it with the -mmac option. The reason that I
am saying this is that a lot of peoplewonder if it should not be -m mac-source, which it
shouldnot.

TableÂ 6.9.Â MAC match options
Match--mac-sourceExampleiptables -A INPUT -m mac
--mac-source00:00:00:00:00:01ExplanationThis match is used to match packets based on
theirMAC source address. The MACaddress specified must be in the
formXX:XX:XX:XX:XX:XX, else it will not be legal. The matchmaybe reversed with an ! sign
and would look like--mac-source ! 00:00:00:00:00:01. This would in other wordsreverse the
meaning of the match, so that all packets except packets from thisMAC address would be
matched. Note that sinceMAC addresses are only used on Ethernet typenetworks, this match
will only be possible to use for Ethernet interfaces. TheMAC match is only valid in
thePREROUTING, FORWARD andINPUT chains and nowhere else.

http://www.linuxhowtos.org/Security/iptables.pdf

page 38 of 107

Mark match

The mark match extension is used to match packets based onthe marks they have set. A
mark is a special field, onlymaintained within the kernel, that is associated with the packets
as theytravel through the computer. Marks may be used by different kernelroutines for such
tasks as traffic shaping and filtering. As of today, thereis only one way of setting a mark in
Linux, namely theMARK target in iptables. This waspreviously done with the FWMARK target
inipchains, and this is why people still refer toFWMARK in advanced routing areas. The mark
field iscurrently set to an unsigned integer, or 4294967296 possible values on a32 bit system.
In other words, you are probably not going to run into thislimit for quite some time.

TableÂ 6.10.Â Mark match options
Match--markExampleiptables -t mangle -A INPUT -m mark --mark1ExplanationThis match is
used to match packets that have previouslybeen marked. Marks can be set with the MARK
targetwhich we will discuss in the next section. All packets traveling throughNetfilter get a
special markfield associated with them. Note that this markfield is not in any way propagated,
within or outside thepacket. It stays inside the computer that made it. If the markfield matches
the mark, it is a match. The markfield is an unsigned integer, hence there can be a maximum
of4294967296 different marks. You may also use a mask with the mark. Themark
specification would then look like, for example, --mark1/1. If a mask is specified, it is logically
AND ed with the markspecified before the actual comparison.

Multiport match

The multiport match extension can be used to specifymultipledestination ports and port
ranges. Without the possibility this matchgives, you would have to use multiple rules of the
same type, just tomatch different ports.

Note
You can not use both standard port matching and multiport matching at thesame time, for
example you can't write: --sport 1024:63353 -mmultiport --dport 21,23,80. This will simply not
work. What in facthappens, if you do, is that iptables honors the first element in the rule,
andignores the multiport instruction.

TableÂ 6.11.Â Multiport match options
Match--source-portExampleiptables -A INPUT -p tcp -m multiport
--source-port22,53,80,110ExplanationThis match matches multiple source ports. A maximum
of 15separate ports may be specified. The ports must be comma delimited, as in theabove
example. The match may only be used in conjunction with the -ptcp or -p udp matches. It is
mainly an enhancedversion of the normal --source-port
match.Match--destination-portExampleiptables -A INPUT -p tcp -m
multiport--destination-port22,53,80,110ExplanationThis match is used to match multiple
destination ports. Itworks exactly the same way as the above mentioned source port match,
exceptthat it matches destination ports. It too has a limit of 15 ports and may onlybe used in
conjunction with -p tcp and -pudp.Match--portExampleiptables -A INPUT -p tcp -m multiport
--port22,53,80,110ExplanationThis match extension can be used to match packets
basedboth on their destination port and their source port. It works the sameway as the
--source-port and--destination-port matches above. It can take a maximum of15 ports and
can only be used in conjunction with -p tcpand -p udp. Note that the --port matchwill only
match packets coming in from and going to the same port, forexample, port 80 to port 80,
port 110 to port 110 and so on.

http://www.linuxhowtos.org/Security/iptables.pdf

page 39 of 107

Owner match

The owner match extension is used to match packets basedon the identity of the process
that created them. The ownercan be specified as the process ID either of the user who
issued the commandin question, that of the group, the process, the session, or that of
thecommand itself. This extension was originally written as an example of whatiptables could
be used for. The ownermatch only works within the OUTPUT chain, for obviousreasons: It is
pretty much impossible to find out any information about theidentity of the instance that sent
a packet from the other end, or where thereis an intermediate hop to the real destination.
Even within theOUTPUT chain it is not very reliable, since certainpackets may not have an
owner. Notorious packets of that sort are (amongother things) the different ICMP
responses.ICMP responses will never match.

TableÂ 6.12.Â Owner match options
Match--uid-ownerExampleiptables -A OUTPUT -m owner --uid-owner500ExplanationThis
packet match will match if the packet was created bythe given User ID (UID). This could be
usedtomatch outgoing packets based on who created them. One possible use would be
toblock any other user than root from opening new connections outside yourfirewall. Another
possible use could be to block everyone but thehttp user from sending packets from
theHTTP port. Match--gid-ownerExampleiptables -A OUTPUT -m owner
--gid-owner0ExplanationThis match is used to match all packets based on theirGroup ID
(GID). This means that we match allpackets based on what group the user creating the
packets are in. This couldbeused to block all but the users in thenetwork group from getting
out onto theInternet or, as described above, only to allow members of thehttp group to create
packets going out fromthe HTTP port. Match--pid-ownerExampleiptables -A OUTPUT -m
owner --pid-owner78ExplanationThis match is used to match packets based on theProcess
ID (PID) that wasresponsible for them. This match is a bit harder to use, but one example
wouldbe only to allow PID 94 to send packets from theHTTP port (if the HTTPprocess is not
threaded, of course). Alternatively we could write a smallscript that grabs the PID from aps
output for a specific daemon and then adds a rule forit. For an example, you could have a
rule as shown in the Pid-owner.txt example. Match--sid-ownerExampleiptables -A
OUTPUT -m owner --sid-owner100ExplanationThis match is used to match packets based
on theSession ID used by the program in question. The valueof the SID, or Session ID ofa
process, is that of the process itself and all processes resulting from theoriginating process.
These latter could be threads, or a child of the originalprocess. So, for example, all of our
HTTPD processesshould have the same SID as their parent process (theoriginating HTTPD
process), if ourHTTPD is threaded (mostHTTPDs are, Apache and Roxen for instance). To
showthis in example, we have created a small script called Sid-owner.txt. This script could
possibly be run every hour or so together with some extra code to check if the HTTPD is
actually running and start it again if necessary, then flush and re-enter our OUTPUT chain if
needed.

State match

The state match extension is used in conjunction with theconnection tracking code in the
kernel. The state match accesses the connectiontracking state of the packets from the
conntracking machine. This allows us toknow in what state the connection is, and works for
pretty much all protocols,including stateless protocols such as ICMP and UDP. In all
cases,there will be a default timeout for the connection and it will then be droppedfrom the
connection tracking database. This match needs to be loadedexplicitly by adding a -m state
statement to the rule. Youwill then have access to one new match called state. The concept
of statematching is covered more fully in the The state machine chapter, since it is such a
large topic.

http://www.linuxhowtos.org/Security/iptables.pdf

page 40 of 107

TableÂ 6.13.Â State matches
Match--stateExampleiptables -A INPUT -m state --stateRELATED,ESTABLISHED
ExplanationThis match option tells the state match whatstates the packets must be in to be
matched. There are currently 4 states thatcan be used. INVALID, ESTABLISHED,NEW and
RELATED.INVALID means that the packet is associated with no knownstream or connection
and that it may contain faulty data or headers.ESTABLISHED means that the packet is part
of an alreadyestablished connection that has seen packets in both directions and is fullyvalid.
NEW means that the packet has or will start a newconnection, or that it is associated with a
connection that has not seenpacketsin both directions. Finally, RELATED means that the
packetisstarting a new connection and is associated with an already establishedconnection.
This could for example mean an FTP datatransfer, or an ICMP error associatedwithan TCP
or UDP connection. Note that theNEW state does not look for SYNbits in TCP packets trying
to start a new connectionand should, hence, not be used unmodified in cases where we have
only onefirewall and no load balancing between different firewalls. However, there maybe
times where this could be useful. For more information on how this could beused, read the
The state machine chapter.

TOS match

The TOS match can be used to match packets based on theirTOS field. TOS stands forType
Of Service, consists of 8 bits, and is locatedinthe IP header. This match is loaded explicitly by
adding -mtos to the rule. TOS is normally used toinform intermediate hosts of the precedence
of the stream and its content (itdoesn't really, but it informs of any specific requirements for
the stream,such as it having to be sent as fast as possible, or it needing to be able tosend as
much payload as possible). How different routers and administratorsdeal with these values
depends. Most do not care at all, while others trytheir best to do something good with the
packets in question and the data theyprovide.

TableÂ 6.14.Â TOS matches
Match--tosExampleiptables -A INPUT -p tcp -m tos --tos0x16ExplanationThis match is used
as described above. It can match packetsbased on their TOS field and their value. This
couldbe used, among other things together with the iproute2and advanced routing functions
in Linux, to mark packetsfor later usage. The match takes an hex or numeric value as an
option, orpossibly one of the names resulting from 'iptables -m tos-h'. At the time of writing it
contained the following named values:Minimize-Delay 16 (0x10),Maximize-Throughput 8
(0x08),Maximize-Reliability 4 (0x04),Minimize-Cost 2 (0x02), andNormal-Service 0
(0x00).Minimize-Delay means to minimize the delay inputting the packets through - example
of standard services that would requirethis include telnet, SSH
andFTP-control.Maximize-Throughput means to find a path thatallows as big a throughput as
possible - a standard protocol would beFTP-data.Maximize-Reliability means to maximize
thereliability of the connection and to use lines that are as reliable aspossible - a couple of
typical examples are BOOTP andTFTP. Minimize-Costmeans minimizing the cost of packets
getting through each link to the clientor server; for example finding the route that costs the
least to travel along.Examples of normal protocols that would use this would beRTSP (Real
Time Stream Control Protocol) and otherstreaming video/radio protocols.
Finally,Normal-Service would mean any normal protocolthat has no special needs.

http://www.linuxhowtos.org/Security/iptables.pdf

page 41 of 107

TTL match

 The TTL match is used to match packets based on theirTTL (Time To Live) field residing in
the IP headers.The TTL field contains 8 bits of data and isdecremented once every time it is
processed by an intermediate host betweenthe client and recipient host. If the TTL reaches
0,an ICMP type 11 code 0 (TTL equals 0 during transit)or code 1 (TTL equals 0 during
reassembly) is transmitted to the party sendingthe packet and informing it of the problem.
This match is only used to matchpackets based on their TTL, and not to changeanything.
The latter, incidentally, applies to all kinds of matches. To loadthis match, you need to add an
-m ttl to the rule.

TableÂ 6.15.Â TTL matches
Match--ttlExampleiptables -A OUTPUT -m ttl --ttl 60ExplanationThis match option is used to
specify theTTL value to match. It takes a numeric value andmatches this value within the
packet. There is no inversion and there are noother specifics to match. It could, for example,
be used for debugging yourlocal network - e.g. LAN hosts that seem to have problems
connecting to hostson the Internet - or to find possible ingress by Trojans etc. The usage
isrelatively limited, however; its usefulness really depends on yourimagination. One example
would be to find hosts with bad defaultTTL values (could be due to a badly
implementedTCP/IP stack, or simply to misconfiguration).

Unclean match

The unclean match takes no options and requiresno more than explicitly loading it when you
want to use it. Note that thisoption is regarded as experimental and may not work at all times,
nor will ittake care of all unclean packages or problems. The unclean match tries tomatch
packets that seem malformed or unusual, such as packets with bad headersor checksums
and so on. This could be used to DROPconnections and to check for bad streams, for
example; however you should beaware that it could possibly break legal connections.

Targets/Jumps
The target/jumps tells the rule what to do with a packet that is a perfectmatch with the match
section of the rule. There are a couple of basic targets,the ACCEPT and DROP targets,
which wewill deal with first. However, before we do that, let us have a brief look athow a jump
is done.

The jump specification is done in exactly the same way as in the targetdefinition, except that
it requires a chain within the same table to jump to.To jump to a specific chain, it is of course
a prerequisite that that chainexists. As we have already explained, a user-defined chain is
created with the-N command. For example, let's say we create a chain in thefilter table called
tcp_packets, like this:

iptables -N tcp_packets

We could then add a jump target to it like this:

http://www.linuxhowtos.org/Security/iptables.pdf

page 42 of 107

iptables -A INPUT -p tcp -j tcp_packets

We would then jump from the INPUT chain to thetcp_packets chain and start traversing that
chain. When/Ifwe reach the end of that chain, we get dropped back to theINPUT chain and
the packet starts traversing from the ruleone step below where it jumped to the other chain
(tcp_packets in this case).If a packet is ACCEPTed within one of the sub chains, itwill be
ACCEPT'ed in the superset chain also and it willnot traverse any of the superset chains any
further. However, do note that thepacket will traverse all other chains in the other tables in a
normal fashion.For more information on table and chain traversing, see the Traversing of
tables and chainschapter.

 Targets on the other hand specify an action to take on thepacket in question. We could for
example, DROP orACCEPT the packet depending on what we want to do.There are also a
number of other actions we may want to take, which wewill describe further on in this section.
Jumping to targets may incurdifferent results, as it were. Some targets will cause the packet
to stoptraversing that specific chain and superior chains as described above.Good examples
of such rules are DROP andACCEPT. Rules that are stopped, will not pass throughany of the
rules further on in the chain or in superior chains. Othertargets, may take an action on the
packet, after which the packet willcontinue passing through the rest of the rules. A good
example of thiswould be the LOG, ULOG andTOS targets. These targets can log thepackets,
mangle them and then pass them on to the otherrules in the same set of chains. We might,
for example, want this so thatwe in addition can mangle both the TTL and theTOS values of
a specific packet/stream. Sometargets will accept extra options (What TOS valueto use etc),
while others don't necessarily need any options - but wecan include them if we want to (log
prefixes, masquerade-to ports and soon). We will try to cover all of these points as we go
through the targetdescriptions. Let us have a look at what kinds of targets there are.

ACCEPT target

 This target needs no further options. As soon as the matchspecification for a packet has
been fully satisfied, and we specify ACCEPT asthe target, the rule is accepted and will not
continue traversing the currentchain or any other ones in the same table. Note however, that
a packet thatwas accepted in one chain might still travel through chains within othertables,
and could still be dropped there. There is nothing special about thistarget whatsoever, and it
does not require, nor have the possibility of,adding options to the target. To use this target,
we simply specify-j ACCEPT.

DNAT target

 The DNAT target is used to do DestinationNetwork Address Translation, which means that
it is used torewritethe Destination IP address of a packet. If a packet ismatched, and this is
the target of the rule, the packet, and all subsequentpackets in the same stream will be
translated, and then routed on to thecorrectdevice, host or network. This target can be
extremely useful, for example,whenyou have an host running your web server inside a
LAN,but no real IP to give it that will work on the Internet. You could then tellthe firewall to
forward all packets going to its ownHTTP port, on to the real web server within theLAN. We
may also specify a whole range of destination IPaddresses, and the DNAT mechanism will
choose thedestination IP address at random for each stream. Hence, we will be able todeal
with a kind of load balancing by doing this.

http://www.linuxhowtos.org/Security/iptables.pdf

page 43 of 107

 Note that the DNAT target is only available within thePREROUTING and OUTPUT
chainsin the nat table, and any of the chains called uponfrom anyof those listed chains. Note
that chains containing DNATtargets may not be used from any other chains, such as
thePOSTROUTING chain.

TableÂ 6.16.Â DNAT target
Option--to-destinationExampleiptables -t nat -A PREROUTING -p tcp -d 15.45.23.67--dport
80 -j DNAT --to-destination 192.168.1.1-192.168.1.10 ExplanationThe --to-destination
option tells theDNAT mechanism which DestinationIP to set in the IP header, and where to
send packets that arematched. The above example would send on all packets destined for IP
address15.45.23.67 to a range of LAN IP's, namely 192.168.1.1through 10. Note, as
described previously, that a single stream will alwaysuse the same host, and that each
stream will randomly be given an IP addressthat it will always be Destined for, within that
stream. We could also havespecified only one IP address, in which case we would always be
connected tothe same host. Also note that we may add a port or port range to which thetraffic
would be redirected to. This is done by adding, for example, an :80statement to the IP
addresses to which we want toDNAT the packets. A rule could then look like--to-destination
192.168.1.1:80 for example, or like--to-destination 192.168.1.1:80-100 if we wanted to
specifya port range. As you can see, the syntax is pretty much the same for theDNAT target,
as for the SNAT target eventhough they do two totally different things. Do note that port
specificationsare only valid for rules that specify the TCP or UDP protocols with the--protocol
option.

 Since DNAT requires quite a lot of work towork properly, I have decided to add a larger
explanation on how to workwith it. Let's take a brief example on how things would be done
normally.We want to publish our website via our Internet connection. We only haveone IP
address, and the HTTP server is located onour internal network. Our firewall has the
external IP address$INET_IP, and our HTTP serverhas the internal IP address $HTTP_IP
and finally thefirewall has the internal IP address $LAN_IP. The firstthing to do is to add the
following simple rule to thePREROUTING chain in the nat table:

iptables -t nat -A PREROUTING --dst $INET_IP -p tcp --dport 80 -j DNAT \
--to-destination $HTTP_IP

 Now, all packets from the Internet going to port 80 on ourfirewall are redirected (or DNAT'ed)
to our internalHTTP server. If you test this from the Internet,everything should work just
perfect. So, what happens if you tryconnecting from a host on the same local network as
theHTTP server? It will simply not work. This is aproblem with routing really. We start out by
dissect what happens in anormal case. The external box has IP address $EXT_BOX,to
maintain readability.

* Packet leaves the connecting host going to$INET_IP and source $EXT_BOX.
* Packet reaches the firewall.
* Firewall DNAT's the packet and runs the packetthrough all different chains etcetera.
* Packet leaves the firewall and travels to the $HTTP_IP.
* Packet reaches the HTTP server, and theHTTP box replies back through the firewall,

ifthat is the box that the routing database has entered as the gateway for$EXT_BOX.
Normally, this would be the default gatewayof the HTTP server.

http://www.linuxhowtos.org/Security/iptables.pdf

page 44 of 107

* Firewall Un-DNAT's the packet again, so the packetlooks as if it was replied to from the
firewall itself.

* Reply packet travels as usual back to the client$EXT_BOX.

 Now, we will consider what happens if the packet was insteadgenerated by a client on the
same network as theHTTP server itself. The client has the IP address$LAN_BOX, while the
rest of the machines maintain thesame settings.

* Packet leaves $LAN_BOX to $INET_IP.
* The packet reaches the firewall.
* The packet gets DNAT'ed, and all other requiredactions are taken, however, the packet is

not SNAT'ed,so the same source IP address is used on the packet.

* The packet leaves the firewall and reaches theHTTP server.
* The HTTP server tries to respond to thepacket, and sees in the routing databases that the

packet came from alocal box on the same network, and hence tries to send the packet
directlyto the original source IP address (which nowbecomes the destination IP address).

* The packet reaches the client, and the client gets confused since thereturn packet does not
come from the host that it sent the originalrequest to. Hence, the client drops the reply
packet, and waits for the"real" reply.

 The simple solution to this problem is toSNAT all packets entering the firewall and leaving
fora host or IP that we know we do DNAT to. For example,consider the above rule. We SNAT
the packetsentering our firewall that are destined for $HTTP_IPport 80 so that they look as if
they came from $LAN_IP.This will force the HTTP server to send thepackets back to our
firewall, which Un-DNAT's thepackets and sends them on to the client. The rule would look
somethinglike this:

iptables -t nat -A POSTROUTING -p tcp --dst $HTTP_IP --dport 80 -j SNAT \
--to-source $LAN_IP

 Remember that the POSTROUTING chain isprocessed last of the chains, and hence the
packet will already beDNAT'ed once it reaches that specific chain. This isthe reason that we
match the packets based on the internal address.

Warning
This last rule will seriously harm your logging, so it is really advisable not to use this method,
but the whole example is still a valid one for all of those who can't afford to set up a specific
DMZ or alike. What will happen is this, packet comes from the Internet, gets SNAT'ed and
DNAT'ed, and finally hits the HTTP server (for example). The HTTP server now only sees the
request as if it was coming from the firewall, and hence logs all requests from the internet as
if they came from the firewall.

This can also have even more severe implications. Take a SMTP server on the LAN, that
allows requests from the internal network, and you have your firewall set up to forward SMTP
traffic to it. You have now effectively created an open relay SMTP server, with horrenduously
bad logging!

http://www.linuxhowtos.org/Security/iptables.pdf

page 45 of 107

You will in other words be better off solving these problems by either setting up a separate
DNS server for your LAN, or to actually set up a separate DMZ, the latter being preferred if
you have the money.

 You think this should be enough by now, and it really is,unless considering one final aspect
to this whole scenario. What if thefirewall itself tries to access the HTTP server,where will it
go? As it looks now, it will unfortunately try to get to itsown HTTP server, and not the server
residing on$HTTP_IP. To get around this, we need to add aDNAT rule in the OUTPUT
chainas well. Following the above example, this should look something like thefollowing:

iptables -t nat -A OUTPUT --dst $INET_IP -p tcp --dport 80 -j DNAT \
--to-destination $HTTP_IP

 Adding this final rule should get everything up and running.All separate networks that do not
sit on the same net as theHTTP server will run smoothly, all hosts on thesame network as
the HTTP server will be able toconnect and finally, the firewall will be able to do proper
connections aswell. Now everything works and no problems should arise.

Note
Everyone should realize that these rules only effects how the packet isDNAT'ed andSNAT'ed
properly.In addition to these rules, you may also need extra rules in the filtertable
(FORWARD chain) to allow the packets totraverse through those chains as well. Don't forget
that all packets havealready gone through the PREROUTING chain, andshould hence have
their destination addresses rewritten already byDNAT.

DROP target

The DROP target does just what it says, it drops packetsdead and will not carry out any
further processing. A packet that matches arule perfectly and is then Dropped will be
blocked. Note that this actionmight in certain cases have an unwanted effect, since it could
leave deadsockets around on either host. A better solution in cases where this is likelywould
be to use the REJECT target, especially when you wantto block port scanners from getting
too much information, such on as filteredports and so on. Also note that if a packet has the
DROPaction taken on it in a subchain, the packet will not be processed in any ofthe main
chains either in the present or in any other table. The packet is inother words totally dead. As
we've seen previously, the target will not sendany kind of information in either direction, nor
to intermediaries such asrouters.

LOG target

The LOG target is specially designed for logging detailedinformation about packets. These
could for example be considered as illegal.Or, logging can be used purely for bug hunting
and error finding. TheLOG target will return specific information on packets,such as most of
the IP headers and other information considered interesting.It does this via the kernel logging
facility, normallysyslogd. This information may then be read directly withdmesg, or from the
syslogd logs, or withother programs or applications. This is an excellent target to use in
debugyour rule-sets, so that you can see what packets go where and what rules areapplied
on what packets. Note as well that it could be a really great idea touse the LOG target
instead of the DROPtarget while you are testing a rule you are not 100% sure about on
aproduction firewall, since a syntax error in the rule-sets could otherwisecause severe
connectivity problems for your users. Also note that theULOG target may be interesting if you
are using reallyextensive logging, since the ULOG target has support directlogging to MySQL
databases and suchlike.

http://www.linuxhowtos.org/Security/iptables.pdf

page 46 of 107

Note
Note that if you get undesired logging direct to consoles, this is notan iptables or
Netfilterproblem, but rather a problem caused by your syslogd configuration - mostprobably
/etc/syslog.conf. Read more in mansyslog.conf for information about this kind of problem.

The LOG target currently takes five options that could beof interest if you have specific
information needs, or want to set differentoptions to specific values. They are all listed below.

TableÂ 6.17.Â LOG target options
Option--log-levelExampleiptables -A FORWARD -p tcp -j LOG --log-leveldebug
ExplanationThis is the option to tell iptables andsyslog which log level to use. For a complete
list of loglevels read the syslog.conf manual. Normally there arethe following log levels, or
priorities as they are normally referred to:debug, info,notice, warning,warn, err,error, crit,alert,
emerg andpanic. The keyword error isthe same as err, warn is thesame as warning and
panic isthe same as emerg. Note that all three of these aredeprecated, in other words do not
use error,warn and panic. The prioritydefines the severity of the message being logged. All
messages are loggedthrough the kernel facility. In other words, setting
kern.=info/var/log/iptables in your syslog.conf file andthen letting all your LOG messages
iniptables use log level info, would make all messages appearin the /var/log/iptables file.
Note that there may beother messages here as well from other parts of the kernel that uses
the infopriority. For more information on logging I recommend you to read thesyslog and
syslog.conf man-pages aswell as other HOWTOs etc. Option--log-prefixExampleiptables
-A INPUT -p tcp -j LOG --log-prefix "INPUTpackets"ExplanationThis option tells iptables to
prefix all logmessages with a specific prefix, which can the easily be combined withgrep or
other tools to track specific problems and outputfrom different rules. The prefix may be up to
29 letters long, includingwhite-spaces and other special symbols.
Option--log-tcp-sequenceExampleiptables -A INPUT -p tcp -j
LOG--log-tcp-sequenceExplanationThis option will log the TCP Sequencenumbers, together
with the log message. The TCPSequence number are special numbers that identify each
packet andwhere it fits into a TCP sequence, as well as how thestream should be
reassembled. Note that this option constitutes a securityrisk if the logs are readable by
unauthorized users, or by the world for thatmatter. As does any log that contains output from
iptables. Option--log-tcp-optionsExampleiptables -A FORWARD -p tcp -j
LOG--log-tcp-optionsExplanationThe --log-tcp-options option logs thedifferent options from
the TCP packet headers and canbe valuable when trying to debug what could go wrong, or
what has actuallygone wrong. This option does not take any variable fields or anything
likethat, just as most of the LOG options don't. Option--log-ip-optionsExampleiptables -A
FORWARD -p tcp -j LOG--log-ip-optionsExplanationThe --log-ip-options option will log most
ofthe IP packet header options. This works exactly the same as the--log-tcp-options option,
but instead works on the IPoptions. These logging messages may be valuable when trying to
debug or trackspecific culprits, as well as for debugging - in just the same way as theprevious
option.

MARK target

http://www.linuxhowtos.org/Security/iptables.pdf

page 47 of 107

The MARK target is used to set Netfiltermark values that are associated with specific
packets. This target is onlyvalidin the mangle table, and will not work outside there.The
MARK values may be used in conjunction with theadvancedrouting capabilities in Linux to
send different packets through differentroutesand to tell them to use different queue
disciplines (qdisc), etc. For moreinformation on advanced routing, check out the Linux
Advanced Routing and Traffic Control HOW-TO. Note that the mark value isnot set within the
actual package, but is an value that is associated withinthe kernel with the packet. In other
words, you can not set aMARK for a packet and then expect theMARK still to be there on
another host. If this is what youwant, you will be better off with the TOS target which
willmangle the TOS value in the IP header.

TableÂ 6.18.Â MARK target options
Option--set-markExampleiptables -t mangle -A PREROUTING -p tcp --dport 22 -jMARK
--set-mark 2ExplanationThe --set-mark option is required to set amark. The --set-mark match
takes an integer value. Forexample, we may set mark 2 on a specific stream of packets, or
on all packetsfrom a specific host and then do advanced routing on that host, to decrease
orincrease the network bandwidth, etc.

MASQUERADE target

 The MASQUERADE target is used basically the same as theSNAT target, but it does not
require any--to-source option. The reason for this is that theMASQUERADE target was made
to work with, for example,dial-up connections, or DHCP connections, which getsdynamic IP
addresses when connecting to the network in question. This meansthat you should only use
the MASQUERADE target withdynamically assigned IP connections, which we don't know
the actual address ofat all times. If you have a static IP connection, you should instead use
theSNAT target.

 When you masquerade a connection, it means that we set the IP address usedon a
specific network interface instead of the --to-sourceoption, and the IP address is
automatically grabbed from the information aboutthe specific interface. The MASQUERADE
target also has theeffect that connections are forgotten when an interface goes down, which
isextremely good if we, for example, kill a specific interface. If we would haveused the SNAT
target, we may have been left with a lot ofold connection tracking data, which would be lying
around for days, swallowingup worth-full connection tracking memory. This is in general the
correctbehavior when dealing with dial-up lines that are probable to be assigned adifferent IP
every time it is brought up. In case we are assigned a differentIP, the connection is lost
anyways, and it is more or less idiotic to keep theentry around.

It is still possible to use the MASQUERADE target insteadof SNAT even though you do have
an static IP, however, itis not favorable since it will add extra overhead, and there may
beinconsistencies in the future which will thwart your existing scripts andrender them
"unusable".

Note that the MASQUERADE target is only valid within thePOSTROUTING chain in the nat
table, just as theSNAT target. The MASQUERADE target takesone option specified below,
which is optional.

TableÂ 6.19.Â MASQUERADE target

http://www.linuxhowtos.org/Security/iptables.pdf

page 48 of 107

Option--to-portsExampleiptables -t nat -A POSTROUTING -p TCP -j
MASQUERADE--to-ports 1024-31000ExplanationThe --to-ports option is used to setthe
source port or ports to use on outgoing packets. Either you can specify asingle port like
--to-ports 1025 or you may specify a portrange as --to-ports 1024-3000. In other words, the
lowerport range delimiter and the upper port range delimiter separated with ahyphen. This
alters the default SNAT port-selection as described in the SNAT target section. The--to-ports
option is only valid if the rule match sectionspecifies the TCP or UDP protocols with the
--protocolmatch.

MIRROR target

The MIRROR target is an experimental and demonstrationtarget only, and you are warned
against using it, since it may result inreally bad loops hence, among other things, resulting in
serious Denial ofService. The MIRROR target is used to invert the source anddestination
fields in the IP header, and then toretransmit the packet. This can cause some really funny
effects, and I'll betthat thanks to this target not just one red faced cracker has cracked his
ownbox by now. The effect of using this target is stark, to say the least. Let'ssay we set up a
MIRROR target for port 80 at computer A. Ifhost B were to come from yahoo.com, and try to
access theHTTP server at host A, the MIRRORtarget would return the yahoo host's own web
page (since this is where it camefrom).

 Note that the MIRROR target is only valid within theINPUT, FORWARD
andPREROUTING chains, and any user-defined chains whichare called from those chains.
Also note that outgoing packets resulting fromthe MIRROR target are not seen by any of the
normal chainsin the filter, nat or mangle tables, which could give rise to loops and
otherproblems. This could make the target the cause of unforeseen headaches. Forexample,
a host might send a spoofed packet to another host that uses theMIRROR command with a
TTL of 255, at thesame time spoofing its own packet, so as to seem as if it comes from a
thirdhost that uses the MIRROR command. The packet will thenbounce back and forth
incessantly, for the number of hops there are to becompleted. If there is only 1 hop, the
packet will jump back and forth 240-255times. Not bad for a cracker, in other words, to send
1500 bytes of data andeat up 380 kbyte of your connection. Note that this is a best case
scenariofor the cracker or script kiddie, whatever we want to call them.

QUEUE target

The QUEUE target is used to queue packets to User-landprograms and applications. It is
used in conjunction with programs orutilities that are extraneous to iptables and may be
used, for example, withnetwork accounting, or for specific and advanced applications which
proxy orfilter packets. We will not discuss this target in depth, since the coding ofsuch
applications is out of the scope of this tutorial. First of all it wouldsimply take too much time,
and secondly such documentation does not haveanything to do with the programming side of
Netfilter and iptables. All ofthis should be fairly well covered in the Netfilter Hacking
HOW-TO.

REDIRECT target

http://www.linuxhowtos.org/Security/iptables.pdf

page 49 of 107

 The REDIRECT target is used to redirect packets andstreams to the machine itself. This
means that we could for exampleREDIRECT all packets destined for theHTTP ports to an
HTTP proxylike squid, on our own host. Locally generated packets are mapped to
the127.0.0.1 address. In other words, this rewrites the destination address toourown host for
packets that are forwarded, or something alike. TheREDIRECT target is extremely good to
use when we want, forexample, transparent proxying, where the LAN hosts do notknow
about the proxy at all.

 Note that the REDIRECT target is only valid within thePREROUTING and OUTPUT
chainsof the nat table. It is also valid within user-defined chains that are onlycalled from
those chains, and nowhere else. The REDIRECTtarget takes only one option, as described
below.

TableÂ 6.20.Â REDIRECT target
Option--to-portsExampleiptables -t nat -A PREROUTING -p tcp --dport 80 -jREDIRECT
--to-ports 8080ExplanationThe --to-ports option specifies thedestination port, or port range, to
use. Without the--to-ports option, the destination port is never altered.This is specified, as
above, --to-ports 8080 in case weonlywant to specify one port. If we would want to specify an
port range, we woulddoit like --to-ports 8080-8090, which tells theREDIRECT target to
redirect the packets to the ports 8080through 8090. Note that this option is only available in
rules specifying theTCP or UDP protocol with the--protocol matcher, since it wouldn't make
any senseanywhereelse.

REJECT target

The REJECT target works basically the same as theDROPtarget, but it also sends back an
error message to the host sending the packetthat was blocked. The REJECT target is as of
today onlyvalid in theINPUT, FORWARD andOUTPUT chains or their sub chains. After all,
thesewould be the only chains in which it would make any sense to put this target.Note that
all chains that use the REJECT target may only becalled by the INPUT,FORWARD, and
OUTPUT chains,else they won't work. There is currently only one option which controls
thenature of how this target works, though this may in turn take a huge set ofvariables. Most
of them are fairly easy to understand, if you have a basicknowledge of TCP/IP.

TableÂ 6.21.Â REJECT target
Option--reject-withExampleiptables -A FORWARD -p TCP --dport 22 -j
REJECT--reject-withtcp-resetExplanationThis option tells the REJECT target whatresponse
to send to the host that sent the packet that we are rejecting. Oncewe get a packet that
matches a rule in which we have specified this target,our host will first of all send the
associated reply, and the packet will thenbe dropped dead, just as the DROP target would
drop it. Thefollowing reject types are currently

le,icmp-host-unreachable,icmp-port-unreachable,icmp-proto-unreachable,icmp-net-prohibited
andicmp-host-prohibited. The default errormessage is to send an port-unreachable to the
host. All ofthe above are ICMP error messages and may be set asyou wish. You can find
further information on their various purposes in theappendix ICMP types. There isalso the
option echo-reply, but this option may only beused in conjunction with rules which would
match ICMPping packets. Finally, there is one more option calledtcp-reset, which may only
be used together with theTCP protocol. The tcp-reset optionwill tell REJECT to send an
TCPRST packet in reply to the sending host. TCPRST packets are used to close open
TCPconnections gracefully. For more information about the TCPRST read . As stated in the
iptables man page, this is mainly useful for blocking ident probes which frequently occur
when sending mail to broken mail hosts, that won't otherwise accept your mail.

http://www.linuxhowtos.org/Security/iptables.pdf

page 50 of 107

RETURN target

The RETURN target will cause the current packet to stoptraveling through the chain where it
hit the rule. If it is the subchain ofanother chain, the packet will continue to travel through the
superior chainsas if nothing had happened. If the chain is the main chain, for example
theINPUT chain, the packet will have the default policytaken on it. The default policy is
normally set to ACCEPT,DROP or similar.

For example, let's say a packet enters the INPUT chain and then hits a rulethat it matches
and that tells it to --jump EXAMPLE_CHAIN.The packet will then start traversing the
EXAMPLE_CHAIN,and all of a sudden it matches a specific rule which has the
--jumpRETURN target set. It will then jump back to theINPUT chain. Another example would
be if the packethit a --jump RETURN rule in theINPUT chain. It would then be dropped to the
defaultpolicy as previously described, and no more actions would be taken in thischain.

SNAT target

 The SNAT target is used to do Source Network AddressTranslation, which means that this
target will rewrite the Source IP addressinthe IP header of the packet. This is what we want,
for example, when severalhosts have to share an Internet connection. We can then turn on ip
forwardingin the kernel, and write an SNAT rule which will translateall packets going out from
our local network to the sourceIP of our own Internet connection. Without doing this, the
outsideworld would not know where to send reply packets, since our local networksmostly
use the IANA specified IP addresses which are allocated forLAN networks. If we forwarded
these packets as is, no oneon the Internet would know that they where actually from us.
TheSNAT target does all the translation needed to do this kindof work, letting all packets
leaving our LAN look as ifthey came from a single host, which would be our firewall.

 The SNAT target is only valid within the nat table,within the POSTROUTING chain. This is
in other wordsthe only chain in which you may use SNAT. Only the firstpacket in a
connection is mangled by SNAT, and after thatall future packets using the same connection
will also beSNATted. Furthermore, the initial rules in thePOSTROUTING chain will be applied
to all the packetsin the same stream.

TableÂ 6.22.Â SNAT target
Option--to-sourceExampleiptables -t nat -A POSTROUTING -p tcp -o eth0 -j SNAT
--to-source 194.236.50.155-194.236.50.160:1024-32000 ExplanationThe --to-source
option is used tospecify which source the packet should use. This option, at its simplest,takes
one IP address which we want to use for the sourceIP address in the IP header. If we want
tobalance between several IP addresses, we can use a range of IP addresses,separated by
a hyphen. The --to--source IP numbers could then, forinstance, be something like in the
above example:194.236.50.155-194.236.50.160. The source IP for each stream that we
openwould then be allocated randomly from these, and a single stream wouldalways use the
same IP address for all packets within that stream. We canalso specify a range of ports to be
used by SNAT. Allthe source ports would then be confined to the ports specified. The portbit
of the rule would then look like in the example above, :1024-32000.This is only valid if -p tcp
or -p udp was specified somewhere in thematch of the rule in question. iptables will always
try to avoid makingany port alterations if possible, but if two hosts try to use the sameports,
iptables will map one of them to another port. If no port range isspecified, then if they're
needed, all source ports below 512 will bemapped to other ports below 512. Those between
source ports 512 and 1023will be mapped to ports below 1024. All other ports will be mapped
to 1024or above. As previously stated, iptables will always try to maintain thesource ports
used by the actual workstation making the connection. Notethat this has nothing to do with
destination ports, so if a client triesto make contact with an HTTP server outside thefirewall, it
will not be mapped to the FTP controlport.

http://www.linuxhowtos.org/Security/iptables.pdf

page 51 of 107

TOS target

 The TOS target is used to set the Type ofService field within the IP header. The TOSfield
consists of 8 bits which are used to help in routingpackets. This is one of the fields that can
be used directly withiniproute2 and its subsystem for routing policies. Worthnoting, is that that
if you handle several separate firewalls and routers,this is the only way to propagate routing
information within the actual packetbetween these routers and firewalls. As previously noted,
theMARK target - which sets a MARKassociated with a specific packet - is only available
within the kernel, andcan not be propagated with the packet. If you feel a need to propagate
routinginformation for a specific packet or stream, you should therefore set theTOS field,
which was developed for this.

There are currently a lot of routers on the Internet which do a pretty bad jobat this, so as of
now it may prove to be a bit useless to attemptTOS mangling before sending the packets on
to theInternet. At best the routers will not pay any attention to theTOS field. At worst, they will
look at theTOS field and do the wrong thing. However, as statedabove, the TOS field can
most definitely be put togood use if you have a large WAN orLAN with multiple routers. You
then in fact have thepossibility of giving packets different routes and preferences, based on
theirTOS value - even though this might be confined toyour own network.

Caution
The TOS target is only capable of setting specific values,or named values on packets. These
predefined TOSvalues can be found in the kernel include files, or more precisely,
theLinux/ip.h file. The reasons are many, and you shouldactually never need to set any other
values; however, there are ways aroundthis limitation. To get around the limitation of only
being able to set thenamed values on packets, you can use the FTOS patch available at the
Paksecured Linux Kernel patches site maintained by MatthewG. Marsh. However, be
cautious with this patch! You should not need to use anyother than the default values, except
in extreme cases.

Note
 Note that this target is only valid within themangle table and can not be used outside it.

Note
Also note that some old versions (1.2.2 or below) of iptables provided abroken
implementation of this target which did not fix the packet checksumupon mangling, hence
rendered the packets bad and in need of retransmission.That in turn would most probably
lead to further mangling and the connectionnever working.

 The TOS target only takes one option as describedbelow.
TableÂ 6.23.Â TOS target
Option--set-tosExampleiptables -t mangle -A PREROUTING -p TCP --dport 22 -jTOS
--set-tos 0x10ExplanationThe --set-tos option tells theTOS mangler what TOS value to
setonpackets that are matched. The option takes a numeric value, either in hex orindecimal
value. As the TOS value consists of 8 bits,thevalue may be 0-255, or in hex 0x00-0xFF. Note
that in the standard TOS targetyou are limited to using the named values available (which
should be more orless standardized), as mentioned in the previous warning. These values
areMinimize-Delay (decimal value 16, hex value0x10), Maximize-Throughput (decimal value
8,hex value 0x08), Maximize-Reliability(decimal value 4, hex value 0x04),Minimize-Cost
(decimal value 2, hex 0x02) orNormal-Service (decimal value 0, hex value0x00). The default
value on most packets isNormal-Service, or 0. Note that you can, ofcourse, use the actual
names instead of the actual hex values to set theTOS value; in fact this is generally to
berecommended, since the values associated with the names may be changed infuture. For
a complete listing of the "descriptive values", do aniptables -j TOS -h. This listing is complete
as of iptables1.2.5 and should hopefully remain so for a while.

http://www.linuxhowtos.org/Security/iptables.pdf

page 52 of 107

TTL target

Caution
This patch requires the TTL patch from the patch-o-matic tree available im the base directory
from http://www.netfilter.org/documentation/index.html#FAQ- The official Netfilter
Frequently AskedQuestions. Also a good place to start at when wondering whatiptables and
Netfilter is about. .

 The TTL target is used to modify the Time To Live field in the IP header. One useful
application of this is tochange all Time To Live values to the same value onall outgoing
packets. One reason for doing this is if you have a bullyISP which don't allow you to have
more than one machineconnected to the same Internet connection, and who actively pursue
this. Setting all TTL values to the same value, will effectively make it a little bit harder for
them to notify that you are doing this. We may then reset the TTL value for all outgoing
packets to a standardized value, such as 64 as specified in Linux kernel.

 For more information on how to set the default value used inLinux, read the ip-sysctl.txt,
which you may find within the Other resources and links appendix.

 The TTL target is only valid within themangle table, and nowhere else. It takes 3 options
asof writing this, all of them described below in the table.

TableÂ 6.24.Â TTL target
Option--ttl-setExampleiptables -t mangle -A PREROUTING -i eth0 -j TTL--ttl-set
64ExplanationThe --ttl-set option tells theTTL target which TTL value to seton the packet in
question. A good value would be around 64 somewhere. It's nottoo long, and it is not too
short. Do not set this value too high, since it mayaffect your network and it is a bit immoral to
set this value to high, since thepacket may start bouncing back and forth between two
mis-configured routers, andthe higher the TTL, the more bandwidth will be eatenunnecessary
in such a case. This target could be used to limit how far away our clients are. A good case
of this could be DNS servers, where we don't want the clients to be too far away.
Option--ttl-decExampleiptables -t mangle -A PREROUTING -i eth0 -j TTL--ttl-dec
1ExplanationThe --ttl-dec option tells theTTL target to decrement the Time To Live value by
theamount specified after the --ttl-dec option. In otherwords, if the TTL for an incoming
packet was 53 and we had set--ttl-dec 3, the packet would leave our host with aTTL value of
49. The reason for this is that thenetworking code will automatically decrement the TTLvalue
by 1, hence the packet will be decremented by 4 steps,from 53 to 49. This could for example
be used when we want to limit how far away the people using our services are. For example,
users should always use a close-by DNS, and hence we could match all packets leaving our
DNS server and then decrease it by several steps. Of course, the--set-ttl may be a better
idea for this usage. Option--ttl-incExampleiptables -t mangle -A PREROUTING -i eth0 -j
TTL--ttl-inc 1ExplanationThe --ttl-inc option tells theTTL target to increment the Time To
Livevalue with the value specified to the--ttl-incoption. This means that we should raise the
TTL valuewith the value specified in the --ttl-inc option, and if wespecified --ttl-inc 4, a packet
entering with aTTL of 53 would leave the host withTTL 56. Note that the same thing goes
here, as for the previous example of the --ttl-dec option, where the network code will
automatically decrement the TTL value by 1, which it always does. This may be used to
make our firewall a bit more stealthy to trace-routes among other things. By setting the TTL
one value higher for all incoming packets, we effectively make the firewall hidden from
trace-routes. Trace-routes are a loved and hated thing, since they provide excellent
information on problems with connections and where it happens, but at the same time, it
gives the hacker/cracker some good information about your upstreams if they have targeted
you. For a good example on how this could be used, see the Ttl-inc.txt script.

http://www.linuxhowtos.org/Security/iptables.pdf

page 53 of 107

ULOG target

 The ULOG target is used to provide user-space logging ofmatching packets. If a packet is
matched and the ULOG targetis set, the packet information is multicasted together with the
whole packetthrough a netlink socket. One or more user-space processes may then
subscribe tovarious multicast groups and receive the packet. This is in other words a
morecomplete and more sophisticated logging facility that is only used by iptablesand
Netfilter so far, and it contains much better facilities for loggingpackets. This target enables
us to log information toMySQL databases, and other databases, making it muchsimpler to
search for specific packets, and to group log entries. Youcan find the ULOGD user-land
applications at the ULOGD project page.

TableÂ 6.25.Â ULOG target
Option--ulog-nlgroupExampleiptables -A INPUT -p TCP --dport 22 -jULOG --ulog-nlgroup
2ExplanationThe --ulog-nlgroup option tells theULOG target which netlink group to send the
packet to. Thereare 32 netlink groups, which are simply specified as 1-32. If we would like
toreach netlink group 5, we would simply write --ulog-nlgroup5. The default netlink group
used is 1. Option--ulog-prefixExampleiptables -A INPUT -p TCP --dport 22 -j
ULOG--ulog-prefix "SSH connection attempt: "ExplanationThe --ulog-prefix option works just
the sameas the prefix value for the standard LOG target. This optionprefixes all log entries
with a user-specified log prefix. It can be 32characters long, and is definitely most useful to
distinguish differentlog-messages and where they came from.
Option--ulog-cprangeExampleiptables -A INPUT -p TCP --dport 22 -j ULOG--ulog-cprange
100ExplanationThe --ulog-cprange option tells theULOG target how many bytes of the
packet to send to theuser-space daemon of ULOG. If we specify 100 as above, wewould
copy 100 bytes of the whole packet to user-space, which would include thewhole header
hopefully, plus some leading data within the actual packet. If wespecify 0, the whole packet
will be copied to user-space, regardless of thepackets size. The default value is 0, so the
whole packet will be copied touser-space. Option--ulog-qthresholdExampleiptables -A
INPUT -p TCP --dport 22 -j ULOG--ulog-qthreshold 10ExplanationThe --ulog-qthreshold
option tells theULOG target how many packets to queue inside the kernelbefore actually
sending the data to user-space. For example, if we set thethreshold to 10 as above, the
kernel would first accumulate 10 packets insidethe kernel, and then transmit it outside to the
user-space as one single netlinkmulti part message. The default value here is 1 because of
backwardcompatibility, the user-space daemon did not know how to handle
multi-partmessages previously.

ChapterÂ 7.Â rc.firewall file

Table of Contents
example rc.firewallexplanation of rc.firewallConfiguration optionsInitial loading of extra
modulesproc set upDisplacement of rules to different chainsSetting up default policiesSetting
up user specified chains in the filter tableINPUT chainFORWARD chainOUTPUT
chainPREROUTING chain of the nat tableStarting SNAT and the POSTROUTING chain

http://www.linuxhowtos.org/Security/iptables.pdf

page 54 of 107

This chapter will deal with an example firewall setup and how the script file could look. We
have used one of the basic setups and dug deeperinto how it works and what we do in it.
This should be used to get a basic ideaon how to solve different problems and what you may
need to think about beforeactually putting your scripts into work. It could be used as is with
somechanges to the variables, but is not suggested since it may not work perfectlytogether
with your network setup. As long as you have a very basic setuphowever, it will very likely
run quite smooth with just a few fixes to it.

Note
note that there might be more efficient ways of making the rule-set,however, the script has
been written for readability so that everyone canunderstand it without having to know too
much BASH scripting before readingthis

example rc.firewall
OK, so you have everything set up and are ready to check out an exampleconfiguration
script. You should at least be if you have come this far. Thisexample rc.firewall.txt (also
included in the Example scripts code-base appendix) is fairly large but not a lot of comments
in it. Instead of looking for comments, I suggest you read through the script file to get a basic
hum about how it looks, and then you return here to get the nitty gritty about the whole script.

explanation of rc.firewall

Configuration options

 The first section you should note within the example rc.firewall.txt is the configuration
section. This should always be changed since it contains the information that is vital to your
actual configuration. For example, your IP address will always change, hence it is available
here. The $INET_IP should always be a fully valid IP address, if you got one (if not, then you
should probably look closer at the rc.DHCP.firewall.txt, however, read on since this script will
introduce a lot of interesting stuff anyways). Also, the $INET_IFACE variable should point to
the actual device used for your Internet connection. This could beeth0, eth1,ppp0, tr0, etc
just toname a few possible device names.

 This script does not contain any special configuration options for DHCP orPPPoE, hence
these sections are empty. The same goes for all sections that areempty, they are however
left there so you can spot the differences between thescripts in a more efficient way. If you
need these parts, then you could alwayscreate a mix of the different scripts, or (hold yourself)
create your own fromscratch.

 The Local Area Network section contains most of theconfiguration options for your LAN,
which arenecessary. For example, you need to specify the IPaddress of the physical
interface connected to theLAN as well as the IP rangewhich the LAN uses and the interface
that the box isconnected to the LAN through.

 Also, as you may see there is a Localhost configuration section. We doprovide it, however
you will with 99% certainty not change any of the valueswithin this section since you will
almost always use the 127.0.0.1IP address and the interface will almost certainly benamed
lo. Also, just below the Localhost configuration,you will find a brief section that pertains to the
iptables. Mainly, thissection only consists of the $IPTABLES variable, which willpoint the
script to the exact location of the iptablesapplication. This may vary a bit, and the default
location when compiling theiptables package by hand is /usr/local/sbin/iptables.However,
many distributions put the actual application in another location suchas /usr/sbin/iptables and
so on.

http://www.linuxhowtos.org/Security/iptables.pdf

page 55 of 107

Initial loading of extra modules

 First, we see to it that the module dependencies files are upto date by issuing an
/sbin/depmod -a command. Afterthis we load the modules that we will require for this script.
Always avoidloading modules that you do not need, and if possible try to avoid
havingmodules lying around at all unless you will be using them. This is for securityreasons,
since it will take some extra effort to make additional rules thisway. Now, for example, if you
want to have support for theLOG, REJECT andMASQUERADE targets and don't have this
compiled staticallyinto your kernel, we load these modules as follows:

/sbin/insmod ipt_LOG
/sbin/insmod ipt_REJECT
/sbin/insmod ipt_MASQUERADE

Caution
 In these scripts we forcedly load the modules, which could lead tofailures of loading the
modules. If a module fails to load, it could dependupon a lot of factors, and it will generate an
error message. If some of themore basic modules fail to load, its biggest probable error is
that the module,or functionality, is statically compiled into the kernel. For furtherinformation
on this subject, read the Problems loading modules section in the Common problems and
questions appendix.

 Next is the option to load ipt_ownermodule, which could for example be used to only allow
certain users to makecertain connections, etc. I will not use that module in this example
butbasically, you could allow only root to doFTP and HTTP connections toredhat.com and
DROP all the others. You could also disallowall users but your own user and root to connect
from your box to the Internet,might be boring for others, but you will be a bit more secure to
bouncinghacker attacks and attacks where the hacker will only use your host as
anintermediate host. For more information about theipt_owner match, look at the ??? section
within the???chapter.

 We may also load extra modules for the state matching code here. All modulesthat extend
the state matching code and connection tracking code are calledip_conntrack_* and
ip_nat_*.Connection tracking helpers are special modules that tells the kernel how toproperly
track the specific connections. Without these so called helpers, thekernel would not know
what to look for when it tries to track specificconnections. The NAT helpers on the other
hand, areextensions of the connection tracking helpers that tells the kernel what to lookfor in
specific packets and how to translate these so the connections willactually work. For
example, FTP is a complex protocolby definition, and it sends connection information within
the actual payload ofthe packet. So, if one of your NATed boxes connect toa FTP server on
the Internet, it will send its ownlocal network IP address within the payload of thepacket, and
tells the FTP server to connect to thatIP address. Since this local network address is notvalid
outside your own network, the FTP server will notknow what to do with it and hence the
connection will break down. TheFTP NAT helpers do all of the translations within
theseconnections so the FTP server will actually know whereto connect. The same thing
applies for DCC filetransfers (sends) and chats. Creating these kind of connections requires
theIP address and ports to be sent within theIRC protocol, which in turn requires some
translationto be done. Without these helpers, some FTP andIRC stuff will work no doubt,
however, some otherthings will not work. For example, you may be able to receive files
overDCC, but not be able to send files. This is due to howthe DCC starts a connection. First
off, you tell thereceiver that you want to send a file and where he should connect to.
Withoutthe helpers, the DCC connection will look as if itwants the receiver to connect to
some host on the receivers own local network.In other words, the whole connection will be
broken. However, the other wayaround, it will work flawlessly since the sender will (most
probably) give youthe correct address to connect to.

http://www.linuxhowtos.org/Security/iptables.pdf

page 56 of 107

Note
If you are experiencing problems with mIRC DCCs over your firewalland everything works
properly with other IRC clients, read the mIRC DCC problems section in the Common
problems and questions appendix.

As of this writing, there is only the option to load modules which add supportfor the FTP and
IRCprotocols. For a long explanation of these conntrack and nat modules, read theCommon
problems and questionsappendix. There are also H.323 conntrack helpers withinthe
patch-o-matic, as well as some other conntrack aswell as NAT helpers. To be able to use
these helpers,you need to use the patch-o-matic and compile your ownkernel. For a better
explanation on how this is done, read the Preparations chapter.

Note
Note that you need to load the ip_nat_irc andip_nat_ftp if you want Network
AddressTranslation to work properly on any of theFTP and IRC protocols. Youwill also need
to load the ip_conntrack_irc andip_conntrack_ftp modules before actually loading theNAT
modules. They are used the same way as theconntrack modules, but it will make it possible
for the computer to doNAT on these two protocols.

proc set up

At this point we start the IP forwarding byechoing a 1 to /proc/sys/net/ipv4/ip_forward in
thisfashion:

 echo "1" > /proc/sys/net/ipv4/ip_forward

Warning
 It may be worth a thought where and when we turn on theIP forwarding. In this script and
all otherswithin the tutorial, we turn it on before actually creating any kind ofIP filters (i.e.,
iptablesrule-sets). This will lead to a brief period of time where the firewallwill accept
forwarding any kind of traffic for everything between amillisecond to a minute depending on
what script we are running and onwhat box. This may give malicious people a small
time-frame to actually getthrough our firewall. In other words, this option should really be
turnedon after creating all firewall rules, however, I havechosen to turn it on before loading
any rules to maintain consistency withthe script breakdown currently used in all scripts.

In case you need dynamic IP support, for example ifyou use SLIP, PPP orDHCP you may
enable the next option,ip_dynaddr by doing the following :

 echo "1" > /proc/sys/net/ipv4/ip_dynaddr
If there is any other options you might need to turn on you should followthat style, there's
other documentations on how to do these things and thisis out of the scope of this
documentation. There is a good but rather briefdocument about the proc system available
within the kernel, which is alsoavailable within the Other resources and links appendix. The
Other resources and links appendix isgenerally a good place to start looking when you have
specific areas that youare looking for information on, that you do not find here.

Note

http://www.linuxhowtos.org/Security/iptables.pdf

page 57 of 107

 The rc.firewall.txt script, and all other scriptscontained within this tutorial, do contain a
small section of non-required procsettings. These may be a good primer to look at when
something is not workingexactly as you want it to, however, do not change these values
before actuallyknowing what they mean.

Displacement of rules to different chains

 This section will briefly describe my choices within the tutorialregarding user specified
chains and some choices specific to therc.firewall.txt script. Some of the paths I havechosen
to go here may be wrong from one or another of aspect. I hope topoint these aspects and
possible problems out to you when and where theyoccur. Also, this section contains a brief
look back to the Traversing of tables and chainschapter. Hopefully, this will remind you a little
bit of how the specifictables and chains are traversed in a real live example.

 I have displaced all the different user-chains in the fashion Ihave to save as much CPU as
possible but at the same time put the mainweight on security and readability. Instead of
letting aTCP packet traverseICMP, UDP andTCP rules, I simply match allTCP packets and
then let theTCP packets traverse an user specified chain.This way we do not get too much
overhead out of it all. The followingpicture will try to explain the basics of how an incoming
packet traversesNetfilter. With these pictures and explanations, I wish to explain andclarify
the goals of this script. We will not discuss any specific detailsyet, but instead further on in
the chapter. This is a really trivialpicture in comparison to the one in the Traversing of tables
and chains chapter where we discussed thewhole traversal of chains and tables in depth.

 Based upon this picture, let us make clear what our goals are. This wholeexample script is
based upon the assumption that we are looking at a scenariocontaining one local network,
one firewall and an Internet connection connectedto the firewall. This example is also based
upon the assumption that we have astatic IP to the Internet (as opposed toDHCP, PPP
andSLIP and others). In this case, we also want to allowthe firewall to act as a server for
certain services on the Internet, and wetrust our local network fully and hence we will not
block any of the trafficfrom the local network. Also, this script has as a main priority to only
allowtraffic that we explicitly want to allow. To do this, we want to set defaultpolicies within
the chains to DROP. This willeffectively kill all connections and all packets that we do not
explicitly allowinside our network or our firewall.

 In the case of this scenario, we would also like to let our local network doconnections to
the Internet. Since the local network is fully trusted, we wantto allow all kind of traffic from the
local network to the Internet. However,the Internet is most definitely not a trusted network
and hence we want toblock them from getting to our local network. Based upon these
generalassumptions, let's look at what we need to do and what we do not need and wantto
do.

http://www.linuxhowtos.org/Security/iptables.pdf

page 58 of 107

 First of all, we want the local network to be able to connect to theInternet, of course. To do
this, we will need to NATall packets since none of the local computers have real IP
addresses. All ofthis is done within the PREROUTING chain, which iscreated last in this
script. This means that we will also have to do somefiltering within the FORWARD chain
since we willotherwise allow outsiders full access to our local network. We trust our
localnetwork to the fullest, and because of that we specifically allow all trafficfrom our local
network to the Internet. Since no one on the Internet should beallowed to contact our local
network computers, we will want to block alltraffic from the Internet to our local network
except already established andrelated connections, which in turn will allow all return traffic
from theInternet to our local network.

 As for our firewall, we may be a bit low on funds perhaps, or we just wantto offer a few
services to people on the Internet. Therefore, we have decidedto allow HTTP, FTP,SSH and
IDENTD access to theactual firewall. All of these protocols are available on the actual
firewall,and hence it should be allowed through the INPUT chain,and we need to allow the
return traffic through theOUTPUT chain. However, we also trust the local networkfully, and
the loopback device and IP address are alsotrusted. Because of this, we want to add special
rules to allow all traffic fromthe local network as well as the loopback network interface. Also,
we do notwant to allow specific packets or packet headers in specific conjunctions, nordo we
want to allow some IP ranges to reach the firewall from the Internet. Forinstance, the
10.0.0.0/8 address range is reserved forlocal networks and hence we would normally not
want to allow packets from such aaddress range since they would with 90% certainty be
spoofed. However, before weimplement this, we must note that certain Internet Service
Providers actuallyuse these address ranges within their own networks. For a closer
discussion ofthis, read the Common problems and questions chapter.

Since we have an FTP server running on the server, aswell as the fact we want to traverse
as few rules as possible, we add a rulewhich lets all established and related traffic through at
the top of theINPUT chain. For the same reason, we want to split therules down into
sub-chains. By doing this, our packets will hopefully only needto traverse as few rules as
possible. By traversing less rules, we make therule-set less time consuming for each packet,
and reduce redundancy within thenetwork.

 In this script, we choose to split the different packets down by theirprotocol family, for
example TCP,UDP or ICMP. AllTCP packets traverse a specific chain namedtcp_packets,
which will contain rules for allTCP ports and protocols that we want to allow. Also, wewant to
do some extra checking on the TCP packets, sowe would like to create one more subchain
for all packets that are accepted forusing valid port numbers to the firewall. This chain we
choose to call theallowed chain, and should contain a few extra checksbefore finally
accepting the packet. As for ICMPpackets, these will traverse the icmp_packets chain.When
we decided on how to create this chain, we could not see any specific needsfor extra checks
before allowing the ICMP packetsthrough if we agree with the type and code of the
ICMPpacket, and hence we accept them directly. Finally, we have the UDP packets
whichneed to be dealt with. These packets, we send to theudp_packets chain which handles
all incomingUDP packets. All incoming UDPpackets should be sent to this chain, and if they
are of an allowed type weshould accept them immediately without any further checking.

http://www.linuxhowtos.org/Security/iptables.pdf

page 59 of 107

Since we are running on a relatively small network, this box is also used as asecondary
workstation and to give some extra levy for this, we want to allowcertain specific protocols to
make contact with the firewall itself, such asspeak freely and ICQ.

 Finally, we have the firewalls OUTPUT chain. Sincewe actually trust the firewall quite a lot,
we allow pretty much all trafficleaving the firewall. We do not do any specific user blocking,
nor do we do anyblocking of specific protocols. However, we do not want people to use this
boxto spoof packets leaving the firewall itself, and hence we only want to allowtraffic from the
IP addresses assigned to the firewall itself. We would mostlikely implement this by adding
rules that ACCEPT allpackets leaving the firewall in case they come from one of the
IPaddresses assigned to the firewall, and if not they will be droppedby the default policy in
the OUTPUT chain.

Setting up default policies

Quite early on in the process of creating our rule-set, we set up the defaultpolicies. We set up
the default policies on the different chains with a fairlysimple command, as described below.

iptables [-P {chain} {policy}]

The default policy is used every time the packets do not match a rule in thechain. For
example, let's say we get a packet that match no single rule in ourwhole rule-set. If this
happens, we must decide what should happen to the packetin question, and this is where the
default policy comes into the picture. Thedefault policy is used on all packets that does not
match with any other rule inour rule-set.

Caution
 Do be cautious with what default policy you set on chains in othertables since they are
simply not made for filtering, and it may lead to verystrange behaviors.

Setting up user specified chains in the filter table

Now you got a good picture on what we want to accomplish with this firewall, solet us get on
to the actual implementation of the rule-set. It is now high timethat we take care of setting up
all the rules and chains that we wish to createand to use, as well as all of the rule-sets within
the chains.

After this, we create the different special chains that we want to usewith the -N command.
The new chains are created and set upwith no rules inside of them. The chains we will use
are, as previouslydescribed, icmp_packets,tcp_packets,udp_packets and theallowed chain,
which is used by thetcp_packets chain. Incoming packets on$INET_IFACE, of ICMP type,
will beredirected to the chain icmp_packets. Packets ofTCP type, will be redirected to
thetcp_packets chain and incoming packets ofUDP type from $INET_IFACE go
toudp_packets chain. All of this will beexplained more in detail in the INPUT chain section
below. To create a chain is quitesimple and only consists of a short declaration of the chain
as this:

http://www.linuxhowtos.org/Security/iptables.pdf

page 60 of 107

iptables [-N chain]

In the upcoming sections we will have a closer look at each and one of theuser defined
chains that we have by now created. Let us have a closer look athow they look and what
rules they contain and what we will accomplish withinthem.

The bad_tcp_packets chain

 The bad_tcp_packets chain is devoted to containrules that inspects incoming packets for
malformed headers or other problems. Asit is, we have only chosen to include a packet filter
which blocks all incomingTCP packets that are considered asNEW but does not have the
SYN bitset, as well as a rule that blocks SYN/ACK packets that are considered NEW. This
chain could be used to check for all possible inconsistencies, such as above or XMAS
port-scans etc. We could also add rules that looks for state INVALID.

 If you want to fully understand the NEW not SYN, you need to look at theState NEW
packets but no SYN bit set section in theCommon problems and questions
appendixregarding state NEW and non-SYN packets getting through other rules.
Thesepackets could be allowed under certain circumstances but in 99% of the cases
wewouldn't want these packets to get through. Hence, we log them to our logs andthen we
DROP them.

The reason that we REJECT SYN/ACK packets that are considered NEW is also very
simple. It is described in more depth in the SYN/ACK and NEW packets section in
theCommon problems and questions appendix.Basically, we do this out of courtesy to other
hosts, since we will prevent themfrom being attacked in a sequence number prediction
attack.

The allowed chain

If a packet comes in on $INET_IFACE and is ofTCP type, it travels through thetcp_packets
chain and if the connection is against aport that we want to allow traffic on, we want to do
some finalchecks on it to see if we actually do want to allow it or not. All of thesefinal checks
are done within the allowed chain.

First of all, we check if the packet is a SYN packet.If it is a SYN packet, it is most likely to be
thefirst packet in a new connection so, of course, we allow this. Then we check ifthe packet
comes from an ESTABLISHED orRELATED connection, if it does, then we, again of
course,allow it. An ESTABLISHED connection is a connection that hasseen traffic in both
directions, and since we have seen aSYN packet, the connection then must be in
stateESTABLISHED, according to the state machine. The last rule inthis chain will DROP
everything else. In this case thispretty much means everything that has not seen traffic in
both directions, i.e., we didn't reply to the SYN packet, or they aretrying to start the
connection with a non SYN packet.There is no practical use of not starting a connectionwith
a SYN packet, except to port scan people prettymuch. There is no currently availableTCP/IP
implementation thatsupports opening a TCP connection with something elsethan a SYN
packet to my knowledge, hence,DROP it since it is 99% sure to be a port scan.

http://www.linuxhowtos.org/Security/iptables.pdf

page 61 of 107

The TCP chain

The tcp_packets chain specifies whatports that are allowed to use on the firewall from the
Internet. Thereis, however, even more checks to do, hence we send each and one of the
packetson to the allowed chain, which we described previously.

-A tcp_packets tells iptables in whichchain to add the new rule, the rule will be added to the
end of the chain.-p TCP tells it to match TCP packetsand -s 0/0 matches all source
addresses from 0.0.0.0 withnetmask 0.0.0.0, in other words all source addresses. Thisis
actually the default behavior but I am using it just to make everything asclear as possible.
--dport 21 means destination port21, in other words if the packet is destined for port 21 they
also match. If allthe criteria are matched, then the packet will be targeted for theallowed
chain. If it doesn't match any of the rules,they will be passed back to the original chain that
sent the packet to thetcp_packets chain.

As it is now, I allow TCP port 21, orFTP control port, which is used to controlFTP connections
and later on I also allow allRELATED connections, and that way we allow PASSIVE and
ACTIVEconnections since the ip_conntrack_ftp module is,hopefully, loaded. If we do not
want to allow FTP atall, we can unload the ip_conntrack_ftp module anddelete the
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport21 -j allowed line from the rc.firewall.txt file.

Port 22 is SSH, which is much better than allowingtelnet on port 23 if you want to allow
anyone from the outside to use a shell onyour box at all. Note that you are dealing with a
firewall. It is always a badidea to give others than yourself any kind of access to a firewall
box.Firewalls should always be kept to a bare minimum and no more.

Port 80 is HTTP, in other words your web server, deleteit if you do not want to run a web
server directly on your firewall.

And finally we allow port 113, which is IDENTD andmight be necessary for some protocols
like IRC, etc to work properly. Do notethat it may be worth to use the oidentd package if
youNAT several hosts on your local network.oidentd has support for relayingIDENTD
requests on to the correct boxes within yourlocal network.

If you feel like adding more open ports with this script, well, it shouldbe quite obvious how to
do that by now. Just cut and paste one of the otherlines in the tcp_packets chain and change
it to theport you want to open.

The UDP chain

If we do get a UDP packet on theINPUT chain, we send them on toudp_packets where we
once again do a match forthe UDP protocol with -p UDP andthen match everything with a
source address of 0.0.0.0 and netmask 0.0.0.0, inother words everything again. Except this,
we only accept specificUDP ports that we want to be open for hosts on theInternet. Do note
that we do not need to open up holes depending on the sendinghosts source port, since this
should be taken care of by the state machine. Weonly need to open up ports on our host if
we are to run a server on anyUDP port, such as DNS etc.Packets that are entering the
firewall and that are part of an alreadyestablished connection (by our local network) will
automatically be acceptedback in by the --state ESTABLISHED,RELATED rules atthe top of
the INPUT chain.

http://www.linuxhowtos.org/Security/iptables.pdf

page 62 of 107

As it is, we do not ACCEPT incomingUDP packets from port 53, which is what we use to
doDNS lookups. The rule is there, but it is perdefault commented out. If you want your
firewall to act as anDNS server, uncomment this line.

I personally also allow port 123, which is NTP ornetwork time protocol. This protocol is used
to setyour computer clock to the same time as certain other time servers which havevery
accurate clocks. Most of you probably do notuse this protocol and hence I am not allowing it
per default. The same thingapplies here however, the rule is there and it is simple to
uncomment to get itworking.

We do currently allow port 2074, which is used for certain real-timemultimedia applications
like speakfreely which you can use to talk to other people in real-time by usingspeakers and
a microphone, or even better, a headset. If you would not like touse this, you could turn it off
quite simply by commenting it out.

Port 4000 is the ICQ protocol. This should be anextremely well known protocol that is used
by the Mirabilis application namedICQ. There is at least 2-3 different ICQclones for Linux and
it is one of the most widely used chat programs in theworld. I doubt there is any further need
to explain what it is.

 At this point, two extra rules are available if you are experiencing a lotof log entries due to
different circumstances. The first rule will blockbroadcast packets to destination ports 135
through 139. These are used byNetBIOS, or SMB for mostMicrosoft users. This will block all
log entries we may get from MicrosoftNetworks on our outside otherwise. The second rule
was also created totake care of excessive logging problems, but instead takes care ofDHCP
queries from the outside. This isspecifically true if your outside network consists of a
non-switchedEthernet type of network, where the clients receive their IPaddresses by DHCP.
During thesecircumstances, you could wind up with a lot of logs from just that.

Note
Do note that the last two rules are specifically opted out since some people may be
interested in these kind of logs. If you are experiencing problems with excessive legit logging,
try to drop these types of packages at this point. There are also more rules of this type just
before the log rules in the INPUT chain.

The ICMP chain

This is where we decide what ICMP types toallow. If a packet of ICMP type comes in oneth0
on the INPUT chain, we then redirect itto the icmp_packets chain as explainedbefore. Here
we check what kind of ICMP typesto allow. For now, I only allow incoming ICMPEcho
requests, TTL equals 0 duringtransit and TTL equals 0 duringreassembly. The reason that
we do not allow any other ICMP typesper default here, is that almost all other ICMP types
should be covered by theRELATED state rules.

Note
If an ICMP packet is sent as a reply to an already existing packet or packet stream it is
considered RELATED to the original stream. For more information on the states, read the
The state machine chapter.

http://www.linuxhowtos.org/Security/iptables.pdf

page 63 of 107

The reason that I allow these ICMP packetsare as follows, Echo Requests are used to
request an echo reply, which in turnis used to mainly ping other hosts to see if they are
available on any of thenetworks. Without this rule, other hosts will not be able to ping us to
see ifwe are available on any network connection. Do note that some people would tendto
erase this rule, since they simple do not want to be seen on the Internet.Deleting this rule will
effectively render any pings to our firewall totallyuseless from the Internet since the firewall
will simply not respond to them.

Time Exceeded (i.e., TTL equals 0 during transit andTTL equals 0 during reassembly), is
allowed in thecase we want to trace-route some host or if a packet gets its Time To Live setto
0, we will get a reply about this. For example, when you trace-routesomeone, you start out
with TTL = 1, and it getsdown to 0 at the first hop on the way out, and a Time Exceeded is
sent backfrom the first gateway en route to the host we are trying to trace-route, thenTTL = 2
and the second gateway sends Time Exceeded,and so on until we get an actual reply from
the host we finally want to getto. This way, we will get a reply from each host on our way to
the actual hostwe want to reach, and we can see every host in between and find out what
hostis broken.

For a complete listing of all ICMP types, see theICMP types appendix . For moreinformation
on ICMP types and their usage, i suggestreading the following documents and reports:

* The Internet Control Message Protocol by Ralph Walden.
* RFC 792 - Internet Control Message Protocol by J. Postel.

Note
As a side-note, I might be wrong in blocking some of theseICMP types for you, but in my
case, everything worksperfectly while blocking all the ICMP types thatI do not allow.

INPUT chain

The INPUT chain as I have written it uses mostlyother chains to do the hard work. This way
we do not get too much load fromiptables, and it will work much better on slow machines
which might otherwisedrop packets at high loads. This is done by checking for specific details
thatshould be the same for a lot of different packets, and then sending thosepackets into
specific user specified chains. By doing this, we can split downour rule-set to contain much
less rules that needs to be traversed by eachpacket and hence the firewall will be put through
a lot less overhead by packetfiltering.

First of all we do certain checks for bad packets. This is done by sending allTCP packets to
thebad_tcp_packets chain. This chain contains a few rulesthat will check for badly formed
packets or other anomalies that we do not wantto accept. For a full explanation of the The
bad_tcp_packets chain section in this chapter.

http://www.linuxhowtos.org/Security/iptables.pdf

page 64 of 107

At this point we start looking for traffic from generally trusted networks.These include the
local network adapter and all traffic coming fromthere, all traffic to and from our loopback
interface,including all our currently assigned IP addresses (thismeans all of them, including
our Internet IP address).As it is, we have chosen to put the rule that allowsLAN activity to the
firewall at the top, since ourlocal network generates more traffic than the Internet connection.
This allowsfor less overhead used to try and match each packet with each rule and it
isalways a good idea to look through what kind of traffic mostly traverses thefirewall. By
doing this, we can shuffle around the rules to be more efficient,leading to less overhead on
the firewall and less congestion on your network.

Before we start touching the "real" rules which decides what we allow from theInternet
interface and not, we have a related rule set up to reduce ouroverhead. This is a state rule
which allows all packets part of an alreadyESTABLISHED or RELATED streamto the Internet
IP address. This rule has an equivalentrule in the allowed chain, which are made rather
redundant by this rule, whichwill be evaluated before the allowed ones are. However,the
--state ESTABLISHED,RELATED rule in the allowed chain hasbeen retained for several
reasons, such as people wanting to cut and pasting thefunction.

After this, We match all TCP packets in theINPUT chain that comes in on the$INET_IFACE
interface, and send those to thetcp_packets, which was previously described.Now we do the
same match for UDP packets on the$INET_IFACE and send those to theudp_packets chain,
and after this allICMP packets are sent to theicmp_packets chain. Normally, a firewall would
behardest hit by TCP packets, thenUDP and last of them all ICMPpackets. This is in normal
case, mind you, and it may be wrong for you. Theabsolute same thing should be looked upon
here, as with the network specificrules. Which causes the most traffic? Should the rules be
thrown around togenerate less overhead? On networks sending huge amounts of data, thisis
an absolute necessity since a Pentium III equivalent machine may be brought to its knees by
a simple rule-set containing100 rules and a single 100mbit Ethernet card runningat full
capacity if the rule-set is badly written. This is an important pieceto look at when writing a
rule-set for your own local network.

At this point we have one extra rule, that is per default opted out, that can be used to get rid
of some excessive logging in case we have some Microsoft network on the outside of our
Linux firewall. Microsoft clients have a bad habit of sending out tons of multicast packets to
the 224.0.0.0/8 range, and hence we have the opportunity to block those packets here so we
don't fill our logs with them. There are also two more rules doing something similar tasks in
the udp_packets chain described in the The UDP chain.

Before we hit the default policy of the INPUTchain, we log it so we may be able to find out
about possible problems and/orbugs. Either it might be a packet that we just do not want to
allow or it mightbe someone who is doing something bad to us, or finally it might be a
problem inour firewall not allowing traffic that should be allowed. In either case we wantto
know about it so it can be dealt with. Though, we do not log more than 3packets per minute
as we do not want to flood our logs with crap which in turnmay fill up our whole logging
partition, also we set a prefix to all log entriesso we know where it came from.

Everything that has not yet been caught will be DROPed bythe default policy on the INPUT
chain. The defaultpolicy was set quite some time back, in the Setting up default policies
section, in this chapter.

http://www.linuxhowtos.org/Security/iptables.pdf

page 65 of 107

FORWARD chain

 The FORWARD chain contains quite few rules in thisscenario. We have a single rule
which sends all packets to thebad_tcp_packets chain, which was also used in theINPUT
chain as described previously. Thebad_tcp_packets chain is constructed in such a
fashionthat it can be used recycled in several calling chains, disregarding of whatpacket
traverses it.

 After this first check for bad TCP packets, wehave the main rules in the FORWARD chain.
The firstrule will allow all traffic from our $LAN_IFACE to any otherinterface to flow freely,
without restrictions. This rule will in other wordsallow all traffic from our LAN to the Internet.
Thesecond rule will allow ESTABLISHED andRELATED traffic back through the firewall. This
will inother words allow packets belonging to connections that was initiated from ourinternal
network to flow freely back to our local network. These rules arerequired for our local network
to be able to access the Internet, since thedefault policy of the FORWARD chain was
previously setto DROP. This is quite clever, since it will allow hosts onour local network to
connect to hosts on the Internet, but at the same timeblock hosts on the Internet from
connecting to the hosts on our internal network.

 Finally we also have a logging rule which will log packets that are notallowed in one or
another way to pass through theFORWARD chain. This will most likely show one oranother
occurrence of a badly formed packet or other problem. One cause may behacker attacks,
and others may be malformed packets. This is exactly the samerule as the one used in the
INPUT chain except for thelogging prefix, "IPT FORWARD packet died: ". The loggingprefix
is mainly used to separate log entries, and may be used to distinguishlog entries to find out
where the packet was logged from and some headeroptions.

OUTPUT chain

Since i know that there is pretty much no one but me using this box which ispartially used as
a Firewall and a workstation currently, I allow almosteverything that goes out from it that has
a source address$LOCALHOST_IP, $LAN_IP or$STATIC_IP. Everything else might be
spoofed in some fashion,even though I doubt anyone that I know would do it on my box. Last
of all we logeverything that gets dropped. If it does get dropped, we will mostdefinitely want
to know about it so we may take action against the problem.Either it is a nasty error, or it is a
weird packet that is spoofed. Finally weDROP the packet in the default policy.

PREROUTING chain of the nat table

The PREROUTING chain is pretty much what it says, itdoes network address translation on
packets before they actually hit therouting decision that sends them onward to the INPUTor
FORWARD chains in the filter table. The onlyreason that we talk about this chain in this
script is that we once again feelobliged to point out that you should not do any filtering in it.
ThePREROUTING chain is only traversed by the first packetin a stream, which means that
all subsequent packets will go totally uncheckedin this chain. As it is with this script, we do
not use thePREROUTING chain at all, however, this is the place wewould be working in right
now if we wanted to do DNATon any specific packets, for example if you want to host your
webserver within your local network. For more information about thePREROUTING chain,
read the Traversing of tables and chains chapter.

http://www.linuxhowtos.org/Security/iptables.pdf

page 66 of 107

Caution
 The PREROUTING chain should not be used for anyfiltering since, among other things,
this chain is only traversed by the firstpacket in a stream. The PREROUTING chain should
be usedfor network address translation only, unless you really know what you aredoing.

Starting SNAT and the POSTROUTING chain

 So, our final mission would be to get the NetworkAddress Translation up, correct? At least to
me. First of allwe add a rule to the nat table, in thePOSTROUTING chain that willNAT all
packets going out on our interfaceconnected to the Internet. For me this would beeth0.
However, there are specific variables addedto all of the example scripts that may be used to
automatically configurethese settings. The -t option tellsiptables which table to insert the rule
in, in thiscase the nat table. The -A command tells us thatwe want to Append a new rule to
an existing chain namedPOSTROUTING and -o $INET_IFACEtells us to match all outgoing
packets on theINET_IFACE interface (or eth0,per default settings in this script) and finally we
set the target toSNAT the packets. So all packets that match this rulewill be SNAT'ed to
lookas it came from your Internet interface. Do note that you must set whichIP address to
give outgoing packets with the--to-source option sent to the SNAT target.

 In this script we have chosen to use the SNATtarget instead of MASQUERADE for a
couple of reasons.The first one is that this script was supposed to run on a firewall thathas a
static IP address. A follow up reason tothe first one, would hence be that it is faster and more
efficient to usethe SNAT target if possible. Of course, it wasalso used to show how it would
work and how it would be used in a reallive example. If you do not have a static IPaddress,
you should definitely give thought to use theMASQUERADE target instead which provides a
simple andeasy facility that will also do NAT for you, butthat will automatically grab the IP
address thatit should use. This takes a little bit extra computing power, but it maymost
definitely be worth it if you use DHCP forinstance. If you would like to have a closer look at
how theMASQUERADE target may look, you should look at therc.DHCP.firewall.txt script.

ChapterÂ 8.Â Example scripts

Table of Contents
rc.firewall.txt scriptstructureThe

ptables.txtrc.flush-iptables.txtLimit-match.txtPid-owner.txtSid-owner.txtTtl-inc.txtIptables-save
ruleset

http://www.linuxhowtos.org/Security/iptables.pdf

page 67 of 107

The objective of this chapter is to give a fairly brief and short explanation ofeach script
available with this tutorial, and to provide an overlook of thescripts and what services they
provide. These scripts are not in any wayperfect, and they may not fit your exact intentions
perfectly. It is in otherwords up to you to make these scripts suitable for your needs. The rest
of thistutorial should most probably be helpful in making this feat. The first sectionof this
tutorial deals with the actual structure that I have established in eachscript so we may find
our way within the script a bit easier.

rc.firewall.txt scriptstructure
 All scripts written for this tutorial has been written after a specificstructure. The reason for
this is that they should be fairly conformable toeach other and to make it easier to find the
differences between the scripts.This structure should be fairly well documented in this brief
chapter. Thischapter should hopefully give a short understanding to why all the scripts
hasbeen written as they have, and why I have chosen to maintain this structure.

Note
 Even though this is the structure I have chosen, do note that this may not bethe best
structure for your scripts. It is only a structure that I have chosento use since it fits the need
of being easy to read and follow the bestaccording to my logic.

The structure

 This is the structure that all scripts in this tutorial should follow. If theydiffer in some way it is
probably an error on my part, unless it is specificallyexplained why I have broken this
structure.

* Configuration - First of all we have theconfiguration options which the rest of the script should
use. Configurationoptions should pretty much always be the first thing in any shell-script.

* Internet - This is the configuration sectionwhich pertains to the Internet connection. This
could be skipped if we do nothave any Internet connection. Note that there may be more
subsections than thoselisted here, but only such that pertains to our Internet connection.

* DHCP - If there are possibly any special DHCPrequirements with this specific script, we will
add the DHCP specificconfiguration options here.

* PPPoE - If there are a possibility that theuser that wants to use this specific script, and if
there are any specialcircumstances that raises the chances that he is using a PPPoE
connection, wewill add specific options for those here.

* LAN - If there is any LAN available behind thefirewall, we will add options pertaining to that in
this section. This is mostlikely, hence this section will almost always be available.

* DMZ - If there is any reason to it, we will adda DMZ zone configuration at this point. Most
scripts lacks this section, mainlybecause any normal home network, or small corporate
network, will not have one.

http://www.linuxhowtos.org/Security/iptables.pdf

page 68 of 107

* Localhost - These options pertain to ourlocal-host. These variables are highly unlikely to
change, but we have put mostof it into variables anyway. Hopefully, there should be no
reason to changethese variables.

* iptables - This section contains iptablesspecific configuration. In most scripts and situations
this should only requireone variable which tells us where the iptables binary is located.

* Other - If there are any other specificoptions and variables, they should first of all be fitted
into the correctsubsection (If it pertains to the Internet connection, it should besub-sectioned
there, etc). If it does not fit in anywhere, it should besub-sectioned directly to the
configuration options somewhere.

* Module loading - This section of the scriptsshould maintain a list of modules. The first part
should contain the requiredmodules, while the second part should contain the non-required
modules.

Note
Note that some modules that may raise security, or add certain services orpossibilities, may
have been added even though they are not required. Thisshould normally be noted in such
cases within the example scripts.

* Required modules - This section should containthe required modules, and possibly special
modules that adds to the security oradds special services to the administrator or clients.

* Non-required modules - This section containsmodules that are not required for normal
operations. All of these modules shouldbe commented out per default, and if you want to add
the service it provides, itis up to you.

* proc configuration - This section should takecare of any special configuration needed in the
proc file system. If some ofthese options are required, they will be listed as such, if not, they
should becommented out per default, and listed under the non-required procconfigurations.
Most of the useful proc configurations will be listed here, butfar from all of them.

* Required proc configuration - This sectionshould contain all of the required proc
configurations for the script inquestion to work. It could possibly also contain configurations
that raisessecurity, and possibly which adds special services or possibilities for
theadministrator or clients.

* Non-required proc configuration - This sectionshould contain non-required proc
configurations that may prove useful. All ofthem should be commented out, since they are
not actually necessary to get thescript to work. This list will contain far from all of the proc
configurationsor nodes.

* rules set up - By now the scripts should mostprobably be ready to insert the rule-set. I have
chosen to split all the rulesdown after table and then chain names. All user specified chains
are createdbefore we do anything to the system built in chains. I have also chosen to setthe
chains and their rule specifications in the same order as they are outputby the iptables -L
command.

http://www.linuxhowtos.org/Security/iptables.pdf

page 69 of 107

* Filter table - First of all we go through thefilter table and its content. First of all we should set
up all the policies inthe table.

* Set policies - Set up all the default policiesfor the system chains. Normally I will set DROP
policies on the chainsin the filter table, and specifically ACCEPT services and streams that I
want toallow inside. This way we will get rid of all ports that we do not want to letpeople use.

* Create user specified chains - At this pointwe create all the user specified chains that we
want to use later on within thistable. We will not be able to use these chains in the system
chains anyways ifthey are not already created so we could as well get to it as soon as
possible.

* Create content in user specified chains -After creating the user specified chains we may as
well enter all the ruleswithin these chains. The only reason I have to enter this data at this
pointalready is that may as well put it close to the creation of the user specifiedchains. You
may as well put this later on in your script, it is totally up toyou.

* INPUT chain - When we have come this far, wedo not have a lot of things left to do within the
filter table so we getonto the INPUT chain. At this point we should add all rules within the
INPUTchain.

Note
 At this point we start following the output from the iptables-L command as you may see.
There is no reason for you to stay withthis structure, however, do try to avoid mixing up data
from different tablesand chains since it will become much harder to read such rule-sets and
to fixpossible problems.

* FORWARD chain - At this point we go on to addthe rules within the FORWARD chain.
Nothing special about this decision.

* OUTPUT chain - Last of all in the filtertable, we add the rules dealing with the OUTPUT
chain. There should hopefullynot be too much to do at this point.

* nat table - After the filter table we take careof the nat table. This is done after the filter table
because of a number ofreasons within these scripts. First of all we do not want to turn the
wholeforwarding mechanism and NAT function on at a too early stage, which couldpossibly
lead to packets getting through the firewall at just the wrongtime point (i.e., when the NAT
has been turned on, but none of the filterrules has been run). Also, I look upon the nat table
as a sort of layer thatlies just outside the filter table and kind of surrounds it. The filter
tablewould hence be the core, while the nat table acts as a layer lying around thefilter table,
and finally the mangle table lies around the nat table as asecond layer. This may be wrong in
some perspectives, but not too far fromreality.

* Set policies - First of all we set up all thedefault policies within the nat table. Normally, I will
be satisfied with thedefault policy set from the beginning, namely the ACCEPT policy. This
tableshould not be used for filtering anyways, and we should not let packets bedropped here
since there are some really nasty things that may happen in suchcases due to our own
presumptions. I let these chains be set to ACCEPT sincethere is no reason not to do so.

http://www.linuxhowtos.org/Security/iptables.pdf

page 70 of 107

* Create user specified chains - At this pointwe create any user specified chains that we want
within the nat table. NormallyI do not have any of these, but I have added this section
anyways, just in case.Note that the user specified chains must be created before they can
actually beused within the system chains.

* Create content in user specified chains - Bynow it should be time to add all the rules to the
user specified chains in thenat table. The same thing goes here as for the user specified
chains in thefilter table. We add this material here since I do not see any reason not to.

* PREROUTING chain - The PREROUTING chain isused to do DNAT on packets in case we
have any need for it. In most scripts thisfeature is not used, or at the very least commented
out, reason being that we donot want to open up big holes to our local network without
knowing about it.Within some scripts we have this turned on by default since the sole
purpose ofthose scripts are to provide such services.

* POSTROUTING chain - The POSTROUTING chainshould be fairly well used by the scripts I
have written since most of themdepend upon the fact that you have one or more local
networks that we want tofirewall against the Internet. Mainly we will try to use the SNAT
target, but incertain cases we are forced to use the MASQUERADE target instead.

* OUTPUT chain - The OUTPUT chain is barely usedat all in any of the scripts. As it looks
now, it is not broken, but I have beenunable to find any good reasons to use this chain so far.
If anyone has a reasonto use this chain, send me a line and I will add it to the tutorial.

* mangle table - The last table to do anythingabout is the mangle table. Normally I will not use
this table at all, since itshould normally not be used for anyone, unless they have specific
needs, such asmasking all boxes to use the exact same TTL or to change TOS fields etc.
Ihave in other words chosen to leave these parts of the scripts more or lessblank, with a few
exceptions where I have added a few examples of what it may beused for.

* Set policies - Set the default policies withinthe chain. The same thing goes here as for the nat
table pretty much. The tablewas not made for filtering, and hence you should avoid it all
together. I havenot set any policies in any of the scripts in the mangle table one way or
theother, and you are encouraged not to do so either.

* Create user specified chains - Create all theuser specified chains. Since I have barely used
the mangle table at all in thescripts, I have neither created any chains here since it is fairly
unusablewithout any data to use within it. However, this section was added just in
casesomeone, or I, would have the need for it in the future.

* Create content in user specified chains - Ifyou have any user specified chains within this
table, you may at this point addthe rules that you want within them here.

* PREROUTING - At this point there is barely anyinformation in any of the scripts in this tutorial
that contains any rules here.

* INPUT chain - At this point there is barely anyinformation in any of the scripts in this tutorial
that contains any rules here.

* FORWARD chain - At this point there is barely anyinformation in any of the scripts in this
tutorial that contains any rules here.

http://www.linuxhowtos.org/Security/iptables.pdf

page 71 of 107

* OUTPUT chain - At this point there is barely anyinformation in any of the scripts in this
tutorial that contains any rules here.

* POSTROUTING chain - At this point there is barely anyinformation in any of the scripts in
this tutorial that contains any rules here.

 Hopefully this should explain more in detail how each script is structured andwhy they are
structured in such a way.

Caution
Do note that these descriptions are extremely brief, and should mainlyjust be seen as a brief
explanation to what and why the scripts has been splitdown as they have. There is nothing
that says that this is the only and best wayto go.

rc.firewall.txt

The rc.firewall.txt script is the main core on which the rest ofthe scripts are based upon. The
rc.firewall file chapter should explain every detail inthe script most thoroughly. Mainly it was
written for a dual homed network.For example, where you have one LAN and one
InternetConnection. This script also makes the assumption that you have a static IP tothe
Internet, and hence don't use DHCP,PPP, SLIP or some otherprotocol that assigns you an IP
automatically. If you are looking for a scriptthat will work with those setups, please take a
closer look at the rc.DHCP.firewall.txt script.

 The rc.firewall.txt script requires the followingoptions to be compiled statically to the kernel,
or as modules. Without one ormore of these, the script will become more or less flawed since
parts of thescripts required functionalities will be unusable. As you change the script youuse,
you could possibly need more options to be compiled into your kerneldepending on what you
want to use.

* CONFIG_NETFILTER
* CONFIG_IP_NF_CONNTRACK
* CONFIG_IP_NF_IPTABLES
* CONFIG_IP_NF_MATCH_LIMIT
* CONFIG_IP_NF_MATCH_STATE
* CONFIG_IP_NF_FILTER
* CONFIG_IP_NF_NAT
* CONFIG_IP_NF_TARGET_LOG

rc.DMZ.firewall.txt

http://www.linuxhowtos.org/Security/iptables.pdf

page 72 of 107

The rc.DMZ.firewall.txt script was written for those people out therethat have one Trusted
Internal Network, oneDe-Militarized Zone and one InternetConnection. The De-Militarized
Zone isin this case 1-to-1 NATed and requires you to do someIP aliasing on your firewall,
i.e., you must make the box recognize packetsfor more than one IP. There are several ways
to get this to work, one is toset 1-to-1 NAT, another one if you have a wholesubnet is to
create a subnetwork, giving the firewall one IP both internallyand externally. You could then
set the IP's to theDMZed boxes as you wish. Do note that this will"steal" two IP's for you, one
for the broadcast address and one for the networkaddress. This is pretty much up to you to
decide and to implement, thistutorial will give you the tools to actually accomplish the
firewalling andNATing part, but it will not tell you exactly whatyou need to do since it is out of
the scope of the tutorial.

 The rc.DMZ.firewall.txt script requires these options to be compiled intoyour kernel, either
statically or as modules. Without these options, at the veryleast, available in your kernel, you
will not be able to use this scriptsfunctionality. You may in other words get a lot of errors
complaining aboutmodules and targets/jumps or matches missing. If you are planning to do
trafficcontrol or any other things like that, you should see to it that you have allthe required
options compiled into your kernel there as well.

* CONFIG_NETFILTER
* CONFIG_IP_NF_CONNTRACK
* CONFIG_IP_NF_IPTABLES
* CONFIG_IP_NF_MATCH_LIMIT
* CONFIG_IP_NF_MATCH_STATE
* CONFIG_IP_NF_FILTER
* CONFIG_IP_NF_NAT
* CONFIG_IP_NF_TARGET_LOG

You need to have two internal networks with this script as you can see from thepicture. One
uses IP range 192.168.0.0/24 and consists of a TrustedInternal Network. The other one uses
IP range 192.168.1.0/24 andconsists of the De-Militarized Zone which we will do1-to-1 NAT
to. For example, if someone from theInternet sends a packet to our DNS_IP, then we
useDNAT, to send the packet on to ourDNS on the DMZ network. Whenthe DNS sees our
packet, the packet will be destinedfor the actual DNS internal network IP, and not to
ourexternal DNS IP. If the packet would not have beentranslated, the DNS wouldn't have
answered the packet.We will show a short example of how the DNAT codelooks:

$IPTABLES -t nat -A PREROUTING -p TCP -i $INET_IFACE -d $DNS_IP \
--dport 53 -j DNAT --to-destination $DMZ_DNS_IP

First of all, DNAT can only be performed in thePREROUTING chain of the nattable. Then we
look for TCP protocol on our$INET_IFACE with destination IP that matches our$DNS_IP,
and is directed to port 53, which is theTCP port for zone transfers between name servers.
Ifwe actually get such a packet we give a target ofDNAT, in other words DNAT. After that we
specify where we want the packet to go withthe --to-destination option and give it the value
of$DMZ_DNS_IP, in other words the IP of theDNS on our DMZ network. Thisis how basic
DNAT works. When the reply to theDNATed packet is sent through the firewall,
itautomatically gets un-DNATed.

http://www.linuxhowtos.org/Security/iptables.pdf

page 73 of 107

By now you should have enough understanding of how everything works to be ableto
understand this script pretty well without any huge complications. If thereis something you
don't understand, that hasn't been gone through in the rest ofthe tutorial, mail me since it is
probably a fault on my side.

rc.DHCP.firewall.txt

The rc.DHCP.firewall.txt script is pretty much identical to the originalrc.firewall.txt.
However,this script no longer uses the STATIC_IP variable, which isthe main change to the
original rc.firewall.txt script. The reason is thatthis won't work together with a dynamic IP
connection. The actual changesneeded to be done to the original script is minimal, however,
I've had somepeople mail me and ask about the problem so this script will be a goodsolution
for you. This script will allow people who usesDHCP, PPP andSLIP connections to connect
to the Internet.

 The rc.DHCP.firewall.txt script requires the followingoptions to be compiled statically to the
kernel, or as modules, as a bareminimum to run properly.

* CONFIG_NETFILTER
* CONFIG_IP_NF_CONNTRACK
* CONFIG_IP_NF_IPTABLES
* CONFIG_IP_NF_MATCH_LIMIT
* CONFIG_IP_NF_MATCH_STATE
* CONFIG_IP_NF_FILTER
* CONFIG_IP_NF_NAT
* CONFIG_IP_NF_TARGET_MASQUERADE
* CONFIG_IP_NF_TARGET_LOG

The main changes done to the script consists of erasing theSTATIC_IP variable as I already
said and deleting allreferences to this variable. Instead of using this variable the script now
does its main filtering on the variable INET_IFACE. Inother words -d $STATIC_IP has been
changed to -i$INET_IFACE. This is pretty much the only changes made and that's allthat's
needed really.

There are some more things to think about though. We can no longer filter in theINPUT chain
depending on, for example,--in-interface $LAN_IFACE --dst $INET_IP. This in turn forcesus
to filter only based on interfaces in such cases where the internal machinesmust access the
Internet addressable IP. One great example is if we arerunning an HTTP on our firewall. If we
go to the mainpage, which contains static links back to the same host, which could be
somedyndns solution, we would get a real hard trouble. TheNATed box would ask the
DNSfor the IP of the HTTP server, then try to accessthat IP. In case we filter based on
interface and IP, theNATed box would be unable to get to theHTTP because the INPUT
chainwould DROP the packets flat to the ground. This alsoapplies in a sense to the case
where we got a static IP, but in such cases itcould be gotten around by adding rules which
check theLAN interface packets for ourINET_IP, and if so ACCEPT them.

http://www.linuxhowtos.org/Security/iptables.pdf

page 74 of 107

As you may read from above, it may be a good idea to get a script, orwrite one, that handles
dynamic IP in a better sense. We could for examplemake a script that grabs the IP from
ifconfig and adds it toa variable, upon boot-up of the Internet connection. A good way to do
this, would be to use for example the ip-up scripts providedwith pppd and some other
programs. For a good site, checkout the linuxguruz.org iptables site which has a huge
collection of scriptsavailable to download. You will find a link to the linuxguruz.org site
fromthe Other resources and linksappendix.

Note
This script might be a bit less secure than therc.firewall.txt script. I would definitely advise
you touse that script if at all possible since this script is more open to attacksfrom the outside.

 Also, there is the possibility to add something like this to your scripts:

INET_IP=`ifconfig $INET_IFACE | grep inet | cut -d : -f 2 | \
cut -d ' ' -f 1`

 The above would automatically grab the IP addressof the $INET_IFACE variable, grep the
correct line whichcontains the IP address and then cuts it downto a manageable IP address.
For a moreelaborate way of doing this, you could apply the snippets of code availablewithin
the retreiveip.txt script,which will automatically grab your Internet IP address when you run
the script.Do note that this may in turn lead to a little bit of "weird" behaviors, suchas stalling
connections to and from the firewall on the internal side. Themost common strange behaviors
are described in the following list.

* If the script is run from within a script which in turn is executed by,for example, the PPP
daemon, it will hang all currentlyactive connections due to the NEW not SYN rules (see the
State NEW packets but no SYN bit set section). It is possibleto get by, if you get rid of the
NEW not SYN rules forexample, but it is questionable.

* If you got rules that are static and always want to be around, it israther harsh to add and
erase rules all the time, without hurting the alreadyexisting ones. For example, if you want to
block hosts on yourLAN to connect to the firewall, but at the same timeoperate a script from
the PPP daemon, how would you doit without erasing your already active rules blocking
theLAN?

* It may get unnecessarily complicated, as seen above which in turn couldlead to security
compromises. If the script is kept simple, it is easier to spotproblems, and to keep order in it.

rc.UTIN.firewall.txt

http://www.linuxhowtos.org/Security/iptables.pdf

page 75 of 107

 The rc.UTIN.firewall.txt script will in contrast to the other scripts block theLAN that is sitting
behind us. In other words, we don'ttrust anyone on any networks we are connected to. We
also disallow people on ourLAN to do anything but specific tasks on the Internet.The only
things we actually allow is POP3,HTTP and FTP access to theInternet. We also don't trust
the internal users to access the firewall morethan we trust users on the Internet.

 The rc.UTIN.firewall.txt script requires the followingoptions to be compiled statically to the
kernel, or as modules. Without one ormore of these, the script will become more or less
flawed since parts of thescripts required functionalities will be unusable. As you change the
script youuse, you could possibly need more options to be compiled into your
kerneldepending on what you want to use.

* CONFIG_NETFILTER
* CONFIG_IP_NF_CONNTRACK
* CONFIG_IP_NF_IPTABLES
* CONFIG_IP_NF_MATCH_LIMIT
* CONFIG_IP_NF_MATCH_STATE
* CONFIG_IP_NF_FILTER
* CONFIG_IP_NF_NAT
* CONFIG_IP_NF_TARGET_LOG

 This script follows the golden rule to not trust anyone, noteven our own employees. This is
a sad fact, but a large part of the hacks andcracks that a company gets hit by is a matter of
people from their own staffperpetrating the hit. This script will hopefully give you some clues
as to whatyou can do with your firewall to strengthen it up. It's not very different fromthe
original rc.firewall.txt script, but it does give a fewhints at what we would normally let through
etc.

rc.test-iptables.txt
The rc.test-iptables.txt script can be used to test all the differentchains, but it might need
some tweaking depending on your configuration, suchas turning on ip_forwarding, and
setting upmasquerading etc. It will work for mostly everyonethough who has all the basic set
up and all the basic tables loaded into kernel.All it really does is set some LOG targets which
will logping replies and ping requests. This way, you will get information on whichchain was
traversed and in which order. For example, run this script and thendo:

ping -c 1 host.on.the.internet

And tail -n 0 -f /var/log/messages while doing the firstcommand. This should show you all the
different chains used and in which order,unless the log entries are swapped around for some
reason.

Note

http://www.linuxhowtos.org/Security/iptables.pdf

page 76 of 107

This script was written for testing purposes only. In other words,it's not a good idea to have
rules like this that logs everything of one sortsince your log partitions might get filled up
quickly and it would be aneffective Denial of Service attack against you and might lead to real
attacks onyou that would be unlogged after the initial Denial of Service attack.

rc.flush-iptables.txt
The rc.flush-iptables.txt script should not really be calleda script in itself. The
rc.flush-iptables.txt script will reset and flushall your tables and chains. The script starts by
setting the default policiesto ACCEPT on the INPUT,OUTPUT and FORWARD chains ofthe
filter table. After this we reset the defaultpolicies of the PREROUTING,POSTROUTING and
OUTPUTchains of the nat table. We do this first so we won'thave to bother about closed
connections and packets not getting through. Thisscript is intended for actually setting up and
troubleshooting your firewall,and hence we only care about opening the whole thing up and
reset it todefault values.

After this we flush all chains first in the filtertable and then in the NAT table. This way we
know thereis no redundant rules lying around anywhere. When all of this is done, we
jumpdown to the next section where we erase all the user specified chains in theNAT and
filter tables. Whenthis step is done, we consider the script done. You may consider adding
rulesto flush your mangle table if you use it.

Note
 One final word on this issue. Certain people have mailed me asking from me toput this
script into the original rc.firewall script using Red Hat Linuxsyntax where you type something
like rc.firewall start and the script starts.However, I will not do that since this is a tutorial and
should be used as aplace to fetch ideas mainly and it shouldn't be filled up with shell
scriptsand strange syntax. Adding shell script syntax and other things makes thescript harder
to read as far as I am concerned and the tutorial was writtenwith readability in mind and will
continue being so.

Limit-match.txt
The limit-match.txt script is a minor test script which will let you test the limit match and see
how it works. Load the script up, and then send ping packets at different intervals to see
which gets through, and how often they get through. All echo replies will be blocked until the
threshold for the burst limit has again been reached.

Pid-owner.txt
The pid-owner.txtis a small example script that shows how we could use the PID owner
match. It does nothing real, but you should be able to run the script, and then from the output
of iptables -L -v be able to tell that the rule actually matches.

Sid-owner.txt

http://www.linuxhowtos.org/Security/iptables.pdf

page 77 of 107

The sid-owner.txt is a small example script that shows how we could use the SID
ownermatch. It does nothing real, but you should be able to run the script, andthen from the
output of iptables -L -v be able to tellthat the rule actually matches.

Ttl-inc.txt
A small example ttl-inc.txt script. This script shows how we could make the firewall/router
invisible to traceroutes, which would otherwise reveal much information to possible attackers.

Iptables-save ruleset
A small example script used in the Saving and restoring large rule-sets chapter to illustrate
how iptables-save may be used. This script is non-working, and should hence not be used for
anything else than a reference.

AppendixÂ A.Â Detailed explanations of special commands

Table of Contents
Listing your active rule-setUpdating and flushing your tables

Listing your active rule-set
To list your currently active rule-set you run a special option to theiptables command, which
we have discussed briefly previouslyin the How a rule is built chapter. This would look like
thefollowing:

 iptables -L
This command should list your currently active rule-set, and translateeverything possible to a
more readable form. For example, it willtranslate all the different ports according to
the/etc/services file as well as DNSall the IP addresses to get DNS records instead. Thelater
can be a bit of a problem though. For example, it will try to resolveLAN IP addresses,
i.e.192.168.1.1, to something useful.192.168.0.0/16 is a private range though andshould not
resolve to anything and the command will seem to hang while resolvingthe IP. To get around
this problem we would do something like the following:

 iptables -L -n
Another thing that might be interesting is to see a few statistics abouteach policy, rule and
chain. We could get this by adding the verboseflag. It would then look something like this:

 iptables -L -n -v
Don't forget that it is also possible to list the nat and mangle tables. This is done with the -t
switch, like this:

 iptables -L -t nat
There are also a few files that might be interesting to look at in the/proc file system. For
example, it might be interestingto know what connections are currently in the conntrack table.
This tablecontains all the different connections currently tracked and serves as a basictable
so we always know what state a connection currently is in. This tablecan not be edited and
even if it was possible, it would be a bad idea. Tosee the table you can run the following
command:

http://www.linuxhowtos.org/Security/iptables.pdf

page 78 of 107

 cat /proc/net/ip_conntrack | less
The above command will show all currently tracked connections even thoughit might be a bit
hard to understand everything.

Updating and flushing your tables
 If at some point you screw up your iptables,there are actually commands to flush them, so
you don't have to reboot.I've actually gotten this question a couple times by now so I thought
I'danswer it right here. If you added a rule in error, you might just changethe -A parameter to
-D in the lineyou added in error. iptables will find the erroneousline and erase it for you, in
case you've got multiple lines lookingexactly the same in the chain, it erases the first instance
it findsmatching your rule. If this is not the wanted behavior you might try touse the -D option
as iptables -D INPUT10 which will erase the 10th rule in theINPUT chain.

 There are also instances where you want to flush a whole chain,in this case you might want
to run the -F option. Forexample, iptables -F INPUT will erase the wholeINPUT chain,
though, this will not changethe default policy, so if this is set toDROP you'll block the
wholeINPUT chain if used as above. To resetthe chain policy, do as how you set it toDROP,
for example iptables -PINPUT ACCEPT.

 I have made a rc.flush-iptables.txt (available as an appendix as well) that will flush and
reset your iptables that you might consider using while setting up your rc.firewall.txt file
properly. One thing though, if you start mucking around in the mangle table, this script will not
erase those, it is rather simple to add the few lines needed to erase those but I have not
added those here since the mangle table is not used in myrc.firewall.txt script so far.

AppendixÂ B.Â Common problems and questions

Table of Contents
Problems loading modulesState NEW packets but no SYN bit setSYN/ACK and NEW
packetsInternet Service Providers who use assigned IP addressesLetting DHCP requests
through iptablesmIRC DCC problems

Problems loading modules
You may run into a few problems with loading modules. For example, you couldget errors
claiming that there is no module by such a name and so on. This may,for example look like
the following.

insmod: iptable_filter: no module by that name found

 This is no reason for concern yet. This or these modules may possiblyhave been statically
compiled into your kernel. This is the first thing youshould look at when trying to solve this
problem. The simplest way to see ifthese modules have been loaded already or if they are
statically compiled intothe kernel, is to simply try and run a command that uses the
specificfunctionality. In the above case, we could not load thefilter table. If this functionality is
not there, weshould be unable to use the filter table at all. Tocheck if the filter table is there,
we do thefollowing.

http://www.linuxhowtos.org/Security/iptables.pdf

page 79 of 107

iptables -t filter -L

 This should either output all of the chains in thefilter table properly, or it should fail. If
everythingis o.k., then it should look something like this depending on if you haverules
inserted or not.

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

 If you do not have the filter table loaded, youwould get an error that looks something like
this instead.

iptables v1.2.5: can't initialize iptables table `filter': Table \
 does not exist (do you need to insmod?)
Perhaps iptables or your kernel needs to be upgraded.

This is a bit more serious since it points out that we first of all do nothave the functionality
compiled into the kernel, and second, that the module isnot possible to find in our normal
module paths. This may either mean that youhave forgotten to install your modules, you have
forgotten to rundepmod -a to update your module databases or you have notcompiled the
functionality as either module or statically into kernel. There mayof course be other reasons
for the module not to be loaded, but these are themain reasons. Most of these problems are
easily solved. The first problem wouldsimply be solved by running make modules_install in
thekernel source directory (if the source has already been compiled and the moduleshave
already been built). The second problem is solved by simply runningdepmod -a once and see
if it works afterward. The thirdproblem is a bit out of the league for this explanation, and you
are more orless left to your own wits here. You will most probably find more informationabout
this on the Linux Documentation Project homepage.

Another error that you may get when running iptables is the following error.

iptables: No chain/target/match by that name

 This error tells us that there is no such chain, target or match. This coulddepend upon a
huge set of factors, the most common being that you havemisspelled the chain, target or
match in question. Also, this could begenerated in case you are trying to use a match that is
not available, eitherbecause you did not load the proper module, it was not compiled into
kernel oriptables failed to automatically load the module. In general, you should lookfor all of
the above solutions but also look for misspelled targets of somesort or another in your rule.

http://www.linuxhowtos.org/Security/iptables.pdf

page 80 of 107

State NEW packets but no SYN bit set
 There is a certain feature iniptables that is not so well documented and may therefore
beoverlooked by a lot of people (yes, including me). If you use stateNEW, packets with the
SYN bit unsetwill get through your firewall. This feature is there because in certain caseswe
want to consider that a packet may be part of an alreadyESTABLISHED connection on, for
instance, another firewall.This feature makes it possible to have two or more firewalls, and for
one of thefirewalls to go down without any loss of data. The firewalling of the subnetcould
then be taken over by our secondary firewall. This does however lead tothe fact that state
NEW will allow pretty much any kind ofTCP connection, regardless if this is the initial 3-way
handshake or not. Totake care of this problem we add the following rules to our
firewallsINPUT, OUTPUT andFORWARD chain:

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG \
 --log-prefix "New not syn:"
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

Caution
 The above rules will take care of this problem. This is a badly documentedbehavior of the
Netfilter/iptablesproject and should definitely be more highlighted. In other words, a
hugewarning is in its place for this kind of behavior on your firewall.

Note that there are some troubles with the above rules and bad Microsoft
TCP/IPimplementations. The above rules will lead to certain conditions where
packetsgenerated by Microsoft products gets labeled as state NEWand hence get logged
and dropped. It will however not lead to brokenconnections to my knowledge. The problem
occurs when a connection gets closed,the final FIN/ACK issent, the state machine of Netfilter
closesthe connection and it is no longer in the conntrack table. At this point thefaulty
Microsoft implementation sends another packet which is considered asstate NEW but lacks
the SYN bitand hence gets matched by the above rules. In other words, don't worry to
muchabout this rule, or if you are worried anyways, set the--log-headers option to the rule
and log the headers tooand you'll get a better look at what the packet looks like.

There is one more known problem with these rules. If someone is currentlyconnected to the
firewall, let's say from the LAN,and you have the script set to be activated when running
aPPP connection. In this case, when you start thePPP connection, the person previously
connected throughthe LAN will be more or less killed. This only applieswhen you are running
with the conntrack and nat code bases as modules, and themodules are loaded and
unloaded each time you run the script. Another way to getthis problem is to run the
rc.firewall.txt script from atelnet connection from a host not on the actual firewall. To put it
simple, youconnect with telnet or some other stream connection. Startthe connection tracking
modules, then load the NEW notSYN packet rules. Finally, the telnetclient or daemon tries to
send something. theconnection tracking code will not recognize this connection as a
legalconnection since it has not seen packets in any direction on this connectionbefore, also
there will be no SYN bits set since it isnot actually the first packet in the connection. Hence,
the packet will match tothe rules and be logged and after-wards dropped to the ground.

http://www.linuxhowtos.org/Security/iptables.pdf

page 81 of 107

SYN/ACK and NEW packets
Certain TCP spoofing attacks uses a technique called Sequence Number Prediction. In this
type of attack, the attacker spoofs some other hosts IP address, while attacking someone,
and tries to predict the Sequence number used by that host.

Let's look on typical TCP spoofing by sequence number prediction.Players: "attacker" [A],
trying to send packets to a "victim" [V],pretending to be some "other host" [O].

* [A] sends SYN to [V] with source IP of [O].
* [V] replies to [O] by SYN/ACK.
* now [O] should reply to an unknown SYN/ACK by RST and the attack isunsuccesful, but let's

assume [O] is down (flooded, turned off or behind firewall that has dropped the packets).

* if [O] didn't mess it up, [A] now can talk to [V] pretending to be[O] as long as it predicts
correct sequence numbers.

As long as we do not send the RST packet to the unknown SYN/ACK in step 3, we will allow
[V] to be attacked, and ourself to be incriminated. Common courtesy, would hence be to send
the RST to [V] in a proper way. If we use the NEW not SYNrules specified in the ruleset,
SYN/ACK packets will be dropped. Hence, we have the following rules in the
bad_tcp_packets chain, just above the NEW not SYN rules:

iptables -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \
-m state --state NEW -j REJECT --reject-with tcp-reset

The chance of being [O] in this scenario should be relatively small, but these rules should be
safe in almost all cases. Except when you run several redundant firewalls which will often
take over packets or streams from each other. In suchcase, some connections may be
blocked, even though they are legit. This rule may actually also allow a few portscans to see
our firewall as well, but they should not be able to tell much more than that.

Internet Service Providers who use assigned IP
addresses
 I have added this since a friend of mine told me something I havetotally forgotten. Certain
stupid Internet Service Providers useIP addresses assigned by IANA for their localnetworks
on which you connect to. For example, the Swedish Internet ServiceProvider and phone
monopoly Telia uses this approach for example on theirDNS servers, which uses the 10.x.x.x
IP address range.The problem you will most probably run into is that we, in this script, do
notallow connections from any IP addresses in the 10.x.x.x range to us,because of spoofing
possibilities. Well, here is unfortunately an examplewhere you actually might have to lift a bit
on those rules. You might justinsert an ACCEPT rule above the spoofsection to allow traffic
from those DNS servers, oryou could just comment out that part of the script. This is how it
might look:

http://www.linuxhowtos.org/Security/iptables.pdf

page 82 of 107

/usr/local/sbin/iptables -t nat -I PREROUTING -i eth1 -s \
 10.0.0.1/32 -j ACCEPT

 I would like to take my moment to bitch at these Internet ServiceProviders. These IP address
ranges are not assigned for you to use for dumbstuff like this, at least not to my knowledge.
For large corporate sites it ismore than o.k., or your own home network, but you are not
supposed to force usto open up ourself just because of some winge of yours.

Letting DHCP requests through iptables
 This is a fairly simple task really, once you get to know howDHCP works, however, you
must be a little bit cautiouswith what you do let in and what you do not let in. First of all, we
should knowthat DHCP works over the UDPprotocol. Hence, this is the first thing to look for.
Second, we should checkwhich interface we get and send the request from. For example, if
oureth0 interface is set up withDHCP, we should not allow DHCPrequests on eth1. To make
the rule a bit more specific,we only allow the actual UDP ports used byDHCP, which should
be ports 67 and 68. These are thecriteria that we choose to match packets on, and that we
allow. The rule wouldnow look like this:

$IPTABLES -I INPUT -i $LAN_IFACE -p udp --dport 67:68 --sport \
 67:68 -j ACCEPT

 Do note that we allow all traffic to and from UDPport 67 and 68 now, however, this should
not be such a huge problem since itonly allows requests from hosts doing the connection
from port 67 or 68 as well.This rule could, of course, be even more restrictive, but it should
be enough toactually accept all DHCP requests and updates withoutopening up too large
holes. If you are concerned, this rule could of course bemade even more restrictive.

mIRC DCC problems
 mIRC uses a special setting which allows it to connect through a firewall andto make DCC
connections work properly without the firewall knowing about it. Ifthis option is used together
with iptables and specifically the ip_conntrack_ircand ip_nat_irc modules, it will simply not
work. The problem is that mIRC willautomatically NAT the inside of the packets for you, and
when the packet reachesthe firewall, the firewall will simply not know how and what to do
with it.mIRC does not expect the firewall to be smart enough to take care of this byitself by
simply querying the IRC server for its IP address and sending DCCrequests with that
address instead.

 Turning on the "I am behind a firewall" configuration option and using theip_conntrack_irc
and ip_nat_irc modules will result in Netfilter creating logentries with the following content
"Forged DCC send packet".

 The simplest possible solution is to just uncheck that configuration optionin mIRC and let
iptables do the work. This means, that you should tell mIRCspecifically that it is not behind a
firewall.

http://www.linuxhowtos.org/Security/iptables.pdf

page 83 of 107

AppendixÂ C.Â ICMP types
 This is a complete listing of all ICMP types:
TableÂ C.1.Â ICMP types
TYPECODEDescriptionQueryError00Echo ReplyxÂ 30Network UnreachableÂ x31Host
UnreachableÂ x32Protocol UnreachableÂ x33Port UnreachableÂ x34Fragmentation needed but
no frag. bit setÂ x35Source routing failedÂ x36Destination network unknownÂ x37Destination
host unknownÂ x38Source host isolated (obsolete)Â x39Destination network administratively
prohibitedÂ x310Destination host administratively prohibitedÂ x311Network unreachable for
TOSÂ x312Host unreachable for TOSÂ x313Communication administratively prohibited by
filteringÂ x314Host precedence violationÂ x315Precedence cutoff in effectÂ x40Source
quenchÂ Â 50Redirect for networkÂ Â 51Redirect for hostÂ Â 52Redirect for TOS and
networkÂ Â 53Redirect for TOS and hostÂ Â 80Echo requestxÂ 90Router advertisementÂ Â 100Route
solicitationÂ Â 110TTL equals 0 during transitÂ x111TTL equals 0 during reassemblyÂ x120IP
header bad (catchall error)Â x121Required options missingÂ x130Timestamp request
(obsolete)xÂ 14Â Timestamp reply (obsolete)xÂ 150Information request
(obsolete)xÂ 160Information reply (obsolete)xÂ 170Address mask requestxÂ 180Address mask
replyxÂ

AppendixÂ D.Â Other resources and links
Here is a list of links to resources and where I have gotten informationfrom, etc :

* ip-sysctl.txt - from the 2.4.14 kernel. Alittle bit short but a good reference for the IP
networking controls and whatthey do to the kernel.

* The Internet Control Message Protocol - A good, brief document describing the ICMP
protocol in detail. Written by Ralph Walden.

* RFC 792 - Internet Control Message Protocol -The definitive resource for all information
about ICMP packets. Whatevertechnical information you need about the ICMP protocol,
this is where youshould turn first. Written by J. Postel.

* RFC 793 - Transmission Control Protocol - This is the original resource on how TCP
should behave on all hosts. This document has been the standard on how TCP should
work since 1981 and forward. Extremely technical, but a must read for anyone who wants
to learn TCP in every detail. This was originally a Department of Defense standard
written by J. Postel.

* ip_dynaddr.txt - from the 2.4.14 kernel. A really shortreference to the ip_dynaddr
settings available via sysctl and the procfile system.

* iptables.8 - The iptables 1.2.4 man page. This is an HTMLizedversion of the man
page which is an excellent reference when reading/writingiptables rule-sets. Always have
it at hand.

* Firewall rules table - A small PDF document gracefully given to thisproject by Stuart
Clark, which gives a reference form where you can write all ofthe information needed for
your firewall, in a simple manner.

http://www.linuxhowtos.org/Security/iptables.pdf

page 84 of 107

* http://www.netfilter.org/ - The official Netfilter and iptablessite. It is a must for
everyone wanting to set up iptablesand Netfilter in linux.

* http://www.netfilter.org/documentation/index.html#FAQ- The official Netfilter
Frequently AskedQuestions. Also a good place to start at when wondering whatiptables
and Netfilter is about.

* http://www.netfilter.org/unreliable-guides/packet-filtering-HOWTO/index.html- Rusty
Russells Unreliable Guide to packet filtering. Excellent documentationabout basic packet
filtering with iptables written by one ofthe core developers of iptables andNetfilter.

* http://www.netfilter.org/unreliable-guides/NAT-HOWTO/index.html- Rusty Russells
Unreliable Guide to Network Address Translation. Excellentdocumentation about Network
Address Translation iniptables and Netfilter written by one ofthe core developers, Rusty
Russell.

* http://www.netfilter.org/unreliable-guides/netfilter-hacking-HOWTO/index.html- Rusty
Russells Unreliable Netfilter Hacking HOW-TO. One of the fewdocumentations on how to
write code in the Netfilter andiptables user-space and kernel space code-base. This was
alsowritten by Rusty Russell.

* http://www.linuxguruz.org/iptables/ - Excellent link-page with links to most of the
pages on the Internetabout iptables and Netfilter. Alsomaintains a list of iptables scripts
fordifferent purposes.

* http://www.islandsoft.net/veerapen.html -Excellent discussion on automatic hardening
of iptables andhow to make small changes that will make your computer automatically
add hostilesites to a special ban list in iptables.

* /etc/protocols - An example protocols file taken from the Slackware distribution. This can
be used to find outwhat protocol number different protocols have, such as the IP, ICMP
or TCP protocols have.

* /etc/services - An example services file taken from the Slackware distribution. This is
extremely good toget used to reading once in a while, specifically if you want to get a
basic lookat what protocols runs on different ports.

* Internet Engineering Task Force - This is one of the biggest groups when it comes to
setting and maintaining Internet standards. They are the ones maintaining the RFC
repository, and consist of a large group of companies and individuals that work together
to ensure the interoperability of the Internet.

* Linux Advanced Routing and Traffic Control HOW-TO - This site hosts the Linux
Advanced Routing and Traffic Control HOWTO. It is one of the biggest and best
documents regarding Linux advanced routing. Maintained by Bert Hubert.

* Paksecured Linux Kernel patches - A site containing all of the kernel patches written by
Matthew G. Marsh. Among others, the FTOS patch is available here.

* ULOGD project page - The homepage of the ULOGD site.
* The Linux Documentation Project is a great site for documentation. Most big documents

for Linux is available here, and if not in the TLDP, you will have to search the net very
carefully. If there is anything you want to know more about, check this site out.

http://www.linuxhowtos.org/Security/iptables.pdf

page 85 of 107

* http://kalamazoolinux.org/presentations/20010417/conntrack.html - Thispresentation
contains an excellent explanation of the conntrack modules andtheir work in Netfilter. If
you are interested in more documentation onconntrack, this is a "must read".

* http://www.docum.org -Excellent information about the CBQ,tc and the ip commands
in Linux. One ofthe few sites that has any information at all about these programs.
Maintainedby Stef Coene.

* http://lists.samba.org/mailman/listinfo/netfilter- The official Netfilter mailing-list.
Extremely useful in case you havequestions about something not covered in this
document or any of the otherlinks here.

And of course the iptables source, documentation andindividuals who helped me.

AppendixÂ E.Â Acknowledgments
I would like to thank the following people for their help on this document:

* FabriceMarie, For major updates to my horrible grammar and spelling.Also a huge
thanks for updating the tutorial to DocBook format with make filesetc.

* MarcBoucher, For helping me out on some aspects on using thestate matching code.

* Frode E.Nyboe, For greatly improving therc.firewall rules and giving great inspiration
whilei was to rewrite the rule-set and being the one who introduced the multiple
tabletraversing into the same file.

* ChapmanBrad, Alexander W.Janssen, Both for making me realize I was thinking
wrongabout how packets traverse the basic NAT and filters tables and in which orderthey
show up.

* MichielBrandenburg, MylesUyema, For helping me out with some of the state
matchingcode and getting it to work.

* Kent `Artech'Stahre, For helping me out with the graphics. I know I suckat graphics,
and you're better than most I know who do graphics;). Also thanksfor checking the tutorial
for errors etc.

* Anders 'DeZENT' Johansson, For hinting me aboutstrange ISPs and so on that uses
reserved networks on the Internet, or atleast on the Internet for you.

* Jeremy`Spliffy' Smith, For giving me hints at stuff that mightscrew up for people and
for trying it out and checking for errors in what I'vewritten.

And of course everyone else I talked to and asked for comments on this file,sorry for not
mentioning everyone.

AppendixÂ F.Â History

http://www.linuxhowtos.org/Security/iptables.pdf

page 86 of 107

VersionÂ 1.1.20Â (25Â NovÂ 2004)
http://iptables-tutorial.frozentux.net
By:Â OskarÂ Andreasson
Contributors:Â SaschaÂ NitschÂ (Sash@linuxhowtos.org)
VersionÂ 1.1.19Â (21Â MayÂ 2003)
http://iptables-tutorial.frozentux.net
By:Â OskarÂ Andreasson
Contributors:Â PeterÂ vanÂ Kampen,Â XavierÂ Bartol,Â JonÂ Anderson,Â ThorstenÂ BremerÂ
andÂ SpanishÂ TranslationÂ Team.
VersionÂ 1.1.18Â (24Â AprÂ 2003)
http://iptables-tutorial.frozentux.net
By:Â OskarÂ Andreasson
Contributors:Â StuartÂ Clark,Â RobertÂ P.Â J.Â Day,Â MarkÂ OrensteinÂ andÂ EdmondÂ Shwayri.
VersionÂ 1.1.17Â (6Â AprÂ 2003)
http://iptables-tutorial.frozentux.net
By:Â OskarÂ Andreasson
Contributors:Â GeraldoÂ AmaralÂ Filho,Â OndrejÂ Suchy,Â DinoÂ Conti,Â RobertÂ P.Â J.Â Day,Â
VelevÂ Dimo,Â SpencerÂ Rouser,Â Daveonos,Â AmandaÂ Hickman,Â OlleÂ JonssonÂ andÂ
BengtÂ Aspvall.
VersionÂ 1.1.16Â (16Â DecÂ 2002)
http://iptables-tutorial.frozentux.net
By:Â OskarÂ Andreasson
Contributors:Â ClemensÂ Schwaighower,Â UweÂ DippelÂ andÂ DaveÂ Wreski.
VersionÂ 1.1.15Â (13Â NovÂ 2002)
http://iptables-tutorial.frozentux.net
By:Â OskarÂ Andreasson
Contributors:Â MarkÂ Sonarte,Â A.Â LesterÂ Buck,Â RobertÂ P.Â J.Â Day,Â ToganÂ Muftuoglu,
AntonyÂ Stone,Â MatthewÂ F.Â BarnesÂ andÂ OttoÂ Matejka.Â
VersionÂ 1.1.14Â (14Â OctÂ 2002)
http://iptables-tutorial.frozentux.net
By:Â OskarÂ Andreasson
Contributors:Â CarolÂ Anne,Â ManuelÂ Minzoni,Â YvesÂ Soun,Â Miernik,Â UweÂ Dippel,Â
DaveÂ KlipecÂ andÂ EddyÂ LÂ OÂ Jansson.
VersionÂ 1.1.13Â (22Â AugÂ 2002)
http://iptables-tutorial.haringstad.com
By:Â OskarÂ Andreasson
Contributors:Â TonsÂ ofÂ peopleÂ reportingÂ badÂ HTMLÂ version.
VersionÂ 1.1.12Â (19Â AugÂ 2002)
http://www.netfilter.org/tutorial/
By:Â OskarÂ Andreasson
Contributors:Â PeterÂ Schubnell,Â StephenÂ J.Â Lawrence,Â UweÂ Dippel,Â BradleyÂ
Dilger,Â VegardÂ Engen,Â CliffordÂ Kite,Â AlessandroÂ Oliveira,Â TonyÂ Earnshaw,Â

http://www.linuxhowtos.org/Security/iptables.pdf

page 87 of 107

HaraldÂ Welte,Â NickÂ AndrewÂ andÂ StepanÂ Kasal.
VersionÂ 1.1.11Â (27Â MayÂ 2002)
http://www.netfilter.org/tutorial/
By:Â OskarÂ Andreasson
Contributors:Â SteveÂ Hnizdur,Â LonniÂ Friedman,Â JelleÂ Kalf,Â HaraldÂ Welte,Â
ValentinaÂ BarriosÂ andÂ TonyÂ Earnshaw.
VersionÂ 1.1.10Â (12Â AprilÂ 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/
By:Â OskarÂ Andreasson
Contributors:Â JelleÂ Kalf,Â TheodoreÂ Alexandrov,Â PaulÂ Corbett,Â RodrigoÂ
RubiraÂ Branco,Â AlistairÂ Tonner,Â MatthewÂ G.Â Marsh,Â UweÂ Dippel,Â EvanÂ
NemersonÂ andÂ MarcelÂ J.E.Â Mol.Â
VersionÂ 1.1.9Â (21Â MarchÂ 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/
By:Â OskarÂ Andreasson
Contributors:Â VinceÂ Herried,Â ToganÂ Muftuoglu,Â GalenÂ Johnson,Â KellyÂ Ashe,Â Janne
Johansson,Â ThomasÂ Smets,Â PeterÂ Horst,Â MitchÂ Landers,Â NeilÂ Jolly,Â JelleÂ Kalf,
JasonÂ LamÂ andÂ EvanÂ Nemerson.
VersionÂ 1.1.8Â (5Â MarchÂ 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/
By:Â OskarÂ Andreasson
VersionÂ 1.1.7Â (4Â FebruaryÂ 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/
By:Â OskarÂ Andreasson
Contributors:Â ParimiÂ Ravi,Â PhilÂ Schultz,Â StevenÂ McClintoc,Â BillÂ Dossett,
DaveÂ Wreski,Â ErikÂ SjÃ¶lund,Â AdamÂ Mansbridge,Â VasooÂ Veerapen,Â AladdinÂ and
RustyÂ Russell.
VersionÂ 1.1.6Â (7Â DecemberÂ 2001)
http://people.unix-fu.org/andreasson/
By:Â OskarÂ Andreasson
Contributors:Â JimÂ Ramsey,Â PhilÂ Schultz,Â GÃ¶ranÂ BÃ¥ge,Â DougÂ Monroe,Â Jasper
Aikema,Â KurtÂ Lieber,Â ChrisÂ Tallon,Â ChrisÂ Martin,Â JonasÂ Pasche,Â Jan
Labanowski,Â RodrigoÂ R.Â Branco,Â JaccoÂ vanÂ KollÂ andÂ DaveÂ Wreski.
VersionÂ 1.1.5Â (14Â NovemberÂ 2001)
http://people.unix-fu.org/andreasson/
By:Â OskarÂ Andreasson
Contributors:Â FabriceÂ Marie,Â MerijnÂ ScheringÂ andÂ KurtÂ Lieber.
VersionÂ 1.1.4Â (6Â NovemberÂ 2001)
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
Contributors:Â StigÂ W.Â Jensen,Â SteveÂ Hnizdur,Â ChrisÂ PlutaÂ andÂ KurtÂ Lieber.
VersionÂ 1.1.3Â (9Â OctoberÂ 2001)
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson

http://www.linuxhowtos.org/Security/iptables.pdf

page 88 of 107

Contributors:Â JoniÂ Chu,Â N.EmileÂ Akabi-DavisÂ andÂ JelleÂ Kalf.
VersionÂ 1.1.2Â (29Â SeptemberÂ 2001)
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
VersionÂ 1.1.1Â (26Â SeptemberÂ 2001)
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
Contributors:Â DaveÂ Richardson.
VersionÂ 1.1.0Â (15Â SeptemberÂ 2001)
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
VersionÂ 1.0.9Â (9Â SeptemberÂ 2001)
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
VersionÂ 1.0.8Â (7Â SeptemberÂ 2001)
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
VersionÂ 1.0.7Â (23Â AugustÂ 2001)
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
Contributors:Â FabriceÂ Marie.
VersionÂ 1.0.6
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
VersionÂ 1.0.5
http://people.unix-fu.org/andreasson
By:Â OskarÂ Andreasson
Contributors:Â FabriceÂ Marie.
Â Â Â

AppendixÂ G.Â GNU Free Documentation License

Table of Contents
0. PREAMBLE1. APPLICABILITY AND DEFINITIONS2. VERBATIM COPYING3. COPYING
IN QUANTITY4. MODIFICATIONS5. COMBINING DOCUMENTS6. COLLECTIONS OF
DOCUMENTS7. AGGREGATION WITH INDEPENDENT WORKS8. TRANSLATION9.
TERMINATION10. FUTURE REVISIONS OF THIS LICENSEHow to use this License for
your documents

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.59 Temple Place, Suite 330, Boston, MA
02111-1307 USAEveryone is permitted to copy and distribute verbatim copiesof this license
document, but changing it is not allowed.

http://www.linuxhowtos.org/Security/iptables.pdf

page 89 of 107

PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for works
 whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. The
"Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be
viewed and edited directly and straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is not "Transparent"
is called "Opaque".

http://www.linuxhowtos.org/Security/iptables.pdf

page 90 of 107

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque
formats include PostScript, PDF, proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
 For works in formats which do not have any title page as such, "Title Page" means the
text near the most prominent appearance of the work's title, preceding the beginning of the
body of the text.

VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge
using public-standard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

http://www.linuxhowtos.org/Security/iptables.pdf

page 91 of 107

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
 License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

* Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

* List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has less than five).

* State on the Title page the name of the publisher of the Modified Version, as the
publisher.

* Preserve all the copyright notices of the Document.
* Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.

* Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

* Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

* Include an unaltered copy of this License.
* Preserve the section entitled "History", and its title, and add to it an item stating at least

the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

* Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to gives
permission.

* In any section entitled "Acknowledgements" or "Dedications", preserve the section's
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

http://www.linuxhowtos.org/Security/iptables.pdf

page 92 of 107

* Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

* Delete any section entitled "Endorsements". Such a section may not be included in
the Modified Version.

* Do not retitle any existing section as "Endorsements" or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled
"Acknowledgements", and any sections entitled "Dedications". You must delete all
sections entitled "Endorsements."

http://www.linuxhowtos.org/Security/iptables.pdf

page 93 of 107

COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an "aggregate", and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document's
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include
the original English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original English version will
 prevail.

TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

http://www.linuxhowtos.org/Security/iptables.pdf

page 94 of 107

FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to
 it, you have the option of following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

 Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.1 or any later version published by the Free Software Foundation; with the Invariant
Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which
ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead
of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

AppendixÂ H.Â GNU General Public License

Table of Contents
0. Preamble1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION2. How to Apply These Terms to Your New Programs

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.59 Temple Place, Suite 330,
Boston, MA 02111-1307 USAEveryone is permitted to copy and distribute verbatim copiesof
this license document, but changing it is not allowed.

Preamble

http://www.linuxhowtos.org/Security/iptables.pdf

page 95 of 107

The licenses for most software are designed to take away yourfreedom to share and change
it. By contrast, the GNU General PublicLicense is intended to guarantee your freedom to
share and change freesoftware--to make sure the software is free for all its users.
ThisGeneral Public License applies to most of the Free SoftwareFoundation's software and
to any other program whose authors commit tousing it. (Some other Free Software
Foundation software is covered bythe GNU Library General Public License instead.) You
can apply it toyour programs, too.

When we speak of free software, we are referring to freedom, notprice. Our General Public
Licenses are designed to make sure that youhave the freedom to distribute copies of free
software (and charge forthis service if you wish), that you receive source code or can get itif
you want it, that you can change the software or use pieces of itin new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions thatforbid anyone to deny you these
rights or to ask you to surrender therights. These restrictions translate to certain
responsibilities for youif you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program,whether gratis or for a fee, you must
give the recipients all the rightsthat you have. You must make sure that they, too, receive or
can get thesource code. And you must show them these terms so they know theirrights.

We protect your rights with two steps: (1) copyright thesoftware, and (2) offer you this license
which gives you legal permissionto copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to makecertain that everyone
understands that there is no warranty for this freesoftware. If the software is modified by
someone else and passed on, wewant its recipients to know that what they have is not the
original, sothat any problems introduced by others will not reflect on the originalauthors'
reputations.

Finally, any free program is threatened constantly bysoftware patents. We wish to avoid the
danger that redistributors of afree program will individually obtain patent licenses, in effect
makingthe program proprietary. To prevent this, we have made it clear that anypatent must
be licensed for everyone's free use or not licensed atall.

The precise terms and conditions for copying, distributionand modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

* This License applies to any program or other workwhich contains a notice placed by the
copyright holder saying it may bedistributed under the terms of this General Public License.
The"Program", below, refers to any such program or work, and a "work based onthe
Program" means either the Program or any derivative work undercopyright law: that is to say,
a work containing the Program or a portionof it, either verbatim or with modifications and/or
translated intoanother language. (Hereinafter, translation is included withoutlimitation in the
term "modification".) Each licensee is addressed as"you".

Activities other than copying, distribution and modificationare not covered by this License;
they are outside its scope. The act ofrunning the Program is not restricted, and the output
from the Program iscovered only if its contents constitute a work based on the
Program(independent of having been made by running the Program). Whether that istrue
depends on what the Program does.

http://www.linuxhowtos.org/Security/iptables.pdf

page 96 of 107

* You may copy and distribute verbatim copies of theProgram's source code as you receive it,
in any medium, provided that youconspicuously and appropriately publish on each copy an
appropriatecopyright notice and disclaimer of warranty; keep intact all the noticesthat refer to
this License and to the absence of any warranty; and giveany other recipients of the Program
a copy of this License along with theProgram.

You may charge a fee for the physical act of transferring acopy, and you may at your option
offer warranty protection in exchange fora fee.

* You may modify your copy or copies of the Programor any portion of it, thus forming a work
based on the Program, and copyand distribute such modifications or work under the terms of
Section 1above, provided that you also meet all of these conditions:

* You must cause the modified files to carryprominent notices stating that you changed the
files and the date of anychange.

* You must cause any work that you distribute or publish,that in whole or in part contains or is
derived from the Program or anypart thereof, to be licensed as a whole at no charge to all
third partiesunder the terms of this License.

* If the modified program normally reads commandsinteractively when run, you must cause it,
when started running for suchinteractive use in the most ordinary way, to print or display
anannouncement including an appropriate copyright notice and a notice thatthere is no
warranty (or else, saying that you provide a warranty) andthat users may redistribute the
program under these conditions, andtelling the user how to view a copy of this License.
(Exception: if theProgram itself is interactive but does not normally print such
anannouncement, your work based on the Program is not required to print
anannouncement.)

These requirements apply to the modified work as a whole. Ifidentifiable sections of that
work are not derived from the Program, andcan be reasonably considered independent and
separate works in themselves,then this License, and its terms, do not apply to those sections
when youdistribute them as separate works. But when you distribute the samesections as
part of a whole which is a work based on the Program, thedistribution of the whole must be
on the terms of this License, whosepermissions for other licensees extend to the entire
whole, and thus toeach and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights orcontest your rights to work written
entirely by you; rather, the intent isto exercise the right to control the distribution of derivative
orcollective works based on the Program.

In addition, mere aggregation of another work not based on theProgram with the Program (or
with a work based on the Program) on a volumeof a storage or distribution medium does not
bring the other work underthe scope of this License.

* You may copy and distribute the Program (or a workbased on it, under Section 2) in object
code or executable form under theterms of Sections 1 and 2 above provided that you also do
one of thefollowing:

* Accompany it with the completecorresponding machine-readable source code, which must
be distributedunder the terms of Sections 1 and 2 above on a medium customarily used
forsoftware interchange; or,

http://www.linuxhowtos.org/Security/iptables.pdf

page 97 of 107

* Accompany it with a written offer, validfor at least three years, to give any third party, for a
charge no morethan your cost of physically performing source distribution, a
completemachine-readable copy of the corresponding source code, to be distributedunder
the terms of Sections 1 and 2 above on a medium customarily used forsoftware interchange;
or,

* Accompany it with the information youreceived as to the offer to distribute corresponding
source code. (Thisalternative is allowed only for noncommercial distribution and only if
youreceived the program in object code or executable form with such an offer,in accord with
Subsection b above.)

The source code for a work means the preferred form of thework for making modifications to
it. For an executable work, completesource code means all the source code for all modules
it contains, plusany associated interface definition files, plus the scripts used tocontrol
compilation and installation of the executable. However, as aspecial exception, the source
code distributed need not include anythingthat is normally distributed (in either source or
binary form) with themajor components (compiler, kernel, and so on) of the operating system
onwhich the executable runs, unless that component itself accompanies theexecutable.

If distribution of executable or object code is made byoffering access to copy from a
designated place, then offering equivalentaccess to copy the source code from the same
place counts as distributionof the source code, even though third parties are not compelled to
copythe source along with the object code.

* You may not copy, modify, sublicense, ordistribute the Program except as expressly provided
under this License.Any attempt otherwise to copy, modify, sublicense or distribute
theProgram is void, and will automatically terminate your rights under thisLicense. However,
parties who have received copies, or rights, from youunder this License will not have their
licenses terminated so long as suchparties remain in full compliance.

* You are not required to accept this License, sinceyou have not signed it. However, nothing
else grants you permission tomodify or distribute the Program or its derivative works. These
actionsare prohibited by law if you do not accept this License. Therefore, bymodifying or
distributing the Program (or any work based on the Program),you indicate your acceptance of
this License to do so, and all its termsand conditions for copying, distributing or modifying the
Program or worksbased on it.

* Each time you redistribute the Program (or anywork based on the Program), the recipient
automatically receives a licensefrom the original licensor to copy, distribute or modify the
Programsubject to these terms and conditions. You may not impose any furtherrestrictions
on the recipients' exercise of the rights granted herein. Youare not responsible for enforcing
compliance by third parties to thisLicense.

* If, as a consequence of a court judgment orallegation of patent infringement or for any other
reason (not limited topatent issues), conditions are imposed on you (whether by court
order,agreement or otherwise) that contradict the conditions of this License,they do not
excuse you from the conditions of this License. If you cannotdistribute so as to satisfy
simultaneously your obligations under thisLicense and any other pertinent obligations, then
as a consequence you maynot distribute the Program at all. For example, if a patent license
wouldnot permit royalty-free redistribution of the Program by all those whoreceive copies
directly or indirectly through you, then the only way youcould satisfy both it and this License
would be to refrain entirely fromdistribution of the Program.

http://www.linuxhowtos.org/Security/iptables.pdf

page 98 of 107

If any portion of this section is held invalid orunenforceable under any particular
circumstance, the balance of thesection is intended to apply and the section as a whole is
intended toapply in other circumstances.

It is not the purpose of this section to induce you toinfringe any patents or other property right
claims or to contest validityof any such claims; this section has the sole purpose of protecting
theintegrity of the free software distribution system, which is implementedby public license
practices. Many people have made generous contributionsto the wide range of software
distributed through that system in relianceon consistent application of that system; it is up to
the author/donor todecide if he or she is willing to distribute software through any
othersystem and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what isbelieved to be a consequence of the
rest of this License.

If the distribution and/or use of the Program is restrictedin certain countries either by patents
or by copyrighted interfaces, theoriginal copyright holder who places the Program under this
License mayadd an explicit geographical distribution limitation excluding thosecountries, so
that distribution is permitted only in or among countriesnot thus excluded. In such case, this
License incorporates the limitationas if written in the body of this License.

* The Free Software Foundation may publish revisedand/or new versions of the General Public
License from time to time.Such new versions will be similar in spirit to the present version,
butmay differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. Ifthe Program specifies a version
number of this License which applies to itand "any later version", you have the option of
following the terms andconditions either of that version or of any later version published by
theFree Software Foundation. If the Program does not specify a versionnumber of this
License, you may choose any version ever published by theFree Software Foundation.

* If you wish to incorporate parts of the Programinto other free programs whose distribution
conditions are different,write to the author to ask for permission. For software which
iscopyrighted by the Free Software Foundation, write to the Free SoftwareFoundation; we
sometimes make exceptions for this. Our decision will beguided by the two goals of
preserving the free status of all derivativesof our free software and of promoting the sharing
and reuse of softwaregenerally.

* NO WARRANTY
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BYAPPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHTHOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTYOF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULARPURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAMIS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OFALL NECESSARY SERVICING, REPAIR OR CORRECTION.

* IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW ORAGREED TO IN
WRITINGWILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/ORREDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES,INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISINGOUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITEDTO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BYYOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHERPROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THEPOSSIBILITY OF
SUCH DAMAGES.

http://www.linuxhowtos.org/Security/iptables.pdf

page 99 of 107

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of thegreatest possible use to the public,
the best way to achieve this is tomake it free software which everyone can redistribute and
change underthese terms.

To do so, attach the following notices to the program. Itis safest to attach them to the start of
each source file to mosteffectively convey the exclusion of warranty; and each file should
have atleast the "copyright" line and a pointer to where the full notice isfound.

>oneÂ lineÂ toÂ giveÂ theÂ program'sÂ nameÂ andÂ aÂ briefÂ ideaÂ ofÂ whatÂ itÂ does.>
CopyrightÂ (C)Â >year>Â Â >nameÂ ofÂ author>
Â Â Â Â

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and papermail.
If the program is interactive, make it output a short notice likethis when it starts in an
interactive mode:

 Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you
are welcome to redistribute it under certain conditions; type `show c' for details.

 The hypothetical commands `show w' and `show c' should showthe appropriate parts of the
General Public License. Of course, thecommands you use may be called something other
than `show w' and `show c';they could even be mouse-clicks or menu items--whatever suits
yourprogram.

 You should also get your employer (if you work as aprogrammer) or your school, if any, to
sign a "copyright disclaimer" forthe program, if necessary. Here is a sample; alter the
names:

Yoyodyne,Â Inc.,Â herebyÂ disclaimsÂ allÂ copyrightÂ interestÂ inÂ theÂ program
`Gnomovision'Â (whichÂ makesÂ passesÂ atÂ compilers)Â writtenÂ byÂ JamesÂ Hacker.
Â Â

>signatureÂ ofÂ TyÂ Coon>,Â 1Â AprilÂ 1989
TyÂ Coon,Â PresidentÂ ofÂ Vice
Â Â

http://www.linuxhowtos.org/Security/iptables.pdf

page 100 of 107

This General Public License does not permit incorporating your program intoproprietary
programs. If your program is a subroutine library, you mayconsider it more useful to permit
linking proprietary applications with thelibrary. If this is what you want to do, use the GNU
Library GeneralPublic License instead of this License.	

AppendixÂ I.Â Example scripts code-base

Table of Contents
Example rc.firewall scriptExample rc.DMZ.firewall scriptExample rc.UTIN.firewall
scriptExample rc.DHCP.firewall scriptExample rc.flush-iptables scriptExample rc.test-iptables
script

Example rc.firewall script

#!/bin/sh
#
rc.firewall - Initial SIMPLE IP Firewall script for Linux 2.4.x and iptables
#
Copyright (C) 2001 Oskar Andreasson >bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
#

###
#
1. Configuration options.
#

#
1.1 Internet Configuration.
#

INET_IP="194.236.50.155"
INET_IFACE="eth0"
INET_BROADCAST="194.236.50.255"

#
1.1.1 DHCP
#

#
1.1.2 PPPoE
#

#
1.2 Local Area Network configuration.
#
your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0
#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE="lo"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

###
#
2. Module loading.
#

#
Needed to initially load modules
#

/sbin/depmod -a

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ipt_MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

###
#
3. /proc set up.
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

###
#
4. rules set up.
#

######
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed
$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \
-m state --state NEW -j REJECT --reject-with tcp-reset
$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"
$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

#
UDP ports
#

#$IPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 53 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 123 -j ACCEPT
$IPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 2074 -j ACCEPT
$IPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 4000 -j ACCEPT

#
In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.
#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#
If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d 255.255.255.255 \
#--destination-port 67:68 -j DROP

#
ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -s $LAN_IP_RANGE -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LAN_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $INET_IP -j ACCEPT

#
Special rule for DHCP requests from LAN, which are not caught properly
otherwise.
#

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -j ACCEPT

#
Rules for incoming packets from the internet.
#

$IPTABLES -A INPUT -p ALL -d $INET_IP -m state --state ESTABLISHED,RELATED \
-j ACCEPT
$IPTABLES -A INPUT -p TCP -i $INET_IFACE -j tcp_packets
$IPTABLES -A INPUT -p UDP -i $INET_IFACE -j udp_packets
$IPTABLES -A INPUT -p ICMP -i $INET_IFACE -j icmp_packets

#
If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs
#

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 -j DROP

#
Log weird packets that don't match the above.
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don't want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $INET_IP -j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

######
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

#
4.2.5 POSTROUTING chain
#

#
Enable simple IP Forwarding and Network Address Translation
#

$IPTABLES -t nat -A POSTROUTING -o $INET_IFACE -j SNAT --to-source $INET_IP

#
4.2.6 OUTPUT chain
#

######
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

http://www.linuxhowtos.org/Security/iptables.pdf

page 101 of 107

Example rc.DMZ.firewall script

#!/bin/sh
#
rc.DMZ.firewall - DMZ IP Firewall script for Linux 2.4.x and iptables
#
Copyright (C) 2001 Oskar Andreasson >bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
#

###
#
1. Configuration options.
#

#
1.1 Internet Configuration.
#

INET_IP="194.236.50.152"
HTTP_IP="194.236.50.153"
DNS_IP="194.236.50.154"
INET_IFACE="eth0"

#
1.1.1 DHCP
#

#
1.1.2 PPPoE
#

#
1.2 Local Area Network configuration.
#
your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0
#

LAN_IP="192.168.0.1"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

DMZ_HTTP_IP="192.168.1.2"
DMZ_DNS_IP="192.168.1.3"
DMZ_IP="192.168.1.1"
DMZ_IFACE="eth2"

#
1.4 Localhost Configuration.
#

LO_IFACE="lo"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

###
#
2. Module loading.
#

#
Needed to initially load modules
#
/sbin/depmod -a

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ipt_MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

###
#
3. /proc set up.
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

###
#
4. rules set up.
#

######
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \
-m state --state NEW -j REJECT --reject-with tcp-reset
$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"
$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
ICMP rules
#

Changed rules totally
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don't want
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Packets from the Internet to this box
#

$IPTABLES -A INPUT -p ICMP -i $INET_IFACE -j icmp_packets

#
Packets from LAN, DMZ or LOCALHOST
#

#
From DMZ Interface to DMZ firewall IP
#

$IPTABLES -A INPUT -p ALL -i $DMZ_IFACE -d $DMZ_IP -j ACCEPT

#
From LAN Interface to LAN firewall IP
#

$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -d $LAN_IP -j ACCEPT

#
From Localhost interface to Localhost IP's
#

$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LAN_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $INET_IP -j ACCEPT

#
Special rule for DHCP requests from LAN, which are not caught properly
otherwise.
#

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -j ACCEPT

#
All established and related packets incoming from the internet to the
firewall
#

$IPTABLES -A INPUT -p ALL -d $INET_IP -m state --state ESTABLISHED,RELATED \
-j ACCEPT

#
In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.
#

#$IPTABLES -A INPUT -p UDP -i $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#
If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES -A INPUT -p UDP -i $INET_IFACE -d 255.255.255.255 \
#--destination-port 67:68 -j DROP

#
If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs
#

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 -j DROP

#
Log weird packets that don't match the above.
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don't want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
DMZ section
#
General rules
#

$IPTABLES -A FORWARD -i $DMZ_IFACE -o $INET_IFACE -j ACCEPT
$IPTABLES -A FORWARD -i $INET_IFACE -o $DMZ_IFACE -m state \
--state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A FORWARD -i $LAN_IFACE -o $DMZ_IFACE -j ACCEPT
$IPTABLES -A FORWARD -i $DMZ_IFACE -o $LAN_IFACE -m state \
--state ESTABLISHED,RELATED -j ACCEPT

#
HTTP server
#

$IPTABLES -A FORWARD -p TCP -i $INET_IFACE -o $DMZ_IFACE -d $DMZ_HTTP_IP \
--dport 80 -j allowed
$IPTABLES -A FORWARD -p ICMP -i $INET_IFACE -o $DMZ_IFACE -d $DMZ_HTTP_IP \
-j icmp_packets

#
DNS server
#

$IPTABLES -A FORWARD -p TCP -i $INET_IFACE -o $DMZ_IFACE -d $DMZ_DNS_IP \
--dport 53 -j allowed
$IPTABLES -A FORWARD -p UDP -i $INET_IFACE -o $DMZ_IFACE -d $DMZ_DNS_IP \
--dport 53 -j ACCEPT
$IPTABLES -A FORWARD -p ICMP -i $INET_IFACE -o $DMZ_IFACE -d $DMZ_DNS_IP \
-j icmp_packets

#
LAN section
#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $INET_IP -j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

######
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

$IPTABLES -t nat -A PREROUTING -p TCP -i $INET_IFACE -d $HTTP_IP --dport 80 \
-j DNAT --to-destination $DMZ_HTTP_IP
$IPTABLES -t nat -A PREROUTING -p TCP -i $INET_IFACE -d $DNS_IP --dport 53 \
-j DNAT --to-destination $DMZ_DNS_IP
$IPTABLES -t nat -A PREROUTING -p UDP -i $INET_IFACE -d $DNS_IP --dport 53 \
-j DNAT --to-destination $DMZ_DNS_IP

#
4.2.5 POSTROUTING chain
#

#
Enable simple IP Forwarding and Network Address Translation
#

$IPTABLES -t nat -A POSTROUTING -o $INET_IFACE -j SNAT --to-source $INET_IP

#
4.2.6 OUTPUT chain
#

######
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

http://www.linuxhowtos.org/Security/iptables.pdf

page 102 of 107

Example rc.UTIN.firewall script

#!/bin/sh
#
rc.firewall - UTIN Firewall script for Linux 2.4.x and iptables
#
Copyright (C) 2001 Oskar Andreasson >bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
#

###
#
1. Configuration options.
#

#
1.1 Internet Configuration.
#

INET_IP="194.236.50.155"
INET_IFACE="eth0"
INET_BROADCAST="194.236.50.255"

#
1.1.1 DHCP
#

#
1.1.2 PPPoE
#

#
1.2 Local Area Network configuration.
#
your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0
#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE="lo"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

###
#
2. Module loading.
#

#
Needed to initially load modules
#

/sbin/depmod -a

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ipt_MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

###
#
3. /proc set up.
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

###
#
4. rules set up.
#

######
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed
$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \
-m state --state NEW -j REJECT --reject-with tcp-reset
$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"
$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

#
UDP ports
#

#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 123 -j ACCEPT
$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 2074 -j ACCEPT
$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 4000 -j ACCEPT

#
In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.
#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#
If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d 255.255.255.255 \
#--destination-port 67:68 -j DROP

#
ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LAN_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $INET_IP -j ACCEPT

#
Rules for incoming packets from anywhere.
#

$IPTABLES -A INPUT -p ALL -d $INET_IP -m state --state ESTABLISHED,RELATED \
-j ACCEPT
$IPTABLES -A INPUT -p TCP -j tcp_packets
$IPTABLES -A INPUT -p UDP -j udp_packets
$IPTABLES -A INPUT -p ICMP -j icmp_packets

#
If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs
#

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 -j DROP

#
Log weird packets that don't match the above.
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don't want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES -A FORWARD -p tcp --dport 21 -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 80 -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 110 -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $INET_IP -j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

######
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

#
4.2.5 POSTROUTING chain
#

#
Enable simple IP Forwarding and Network Address Translation
#

$IPTABLES -t nat -A POSTROUTING -o $INET_IFACE -j SNAT --to-source $INET_IP

#
4.2.6 OUTPUT chain
#

######
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

http://www.linuxhowtos.org/Security/iptables.pdf

page 103 of 107

Example rc.DHCP.firewall script

#!/bin/sh
#
rc.firewall - DHCP IP Firewall script for Linux 2.4.x and iptables
#
Copyright (C) 2001 Oskar Andreasson >bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
#

###
#
1. Configuration options.
#

#
1.1 Internet Configuration.
#

INET_IFACE="eth0"

#
1.1.1 DHCP
#

#
Information pertaining to DHCP over the Internet, if needed.
#
Set DHCP variable to no if you don't get IP from DHCP. If you get DHCP
over the Internet set this variable to yes, and set up the proper IP
address for the DHCP server in the DHCP_SERVER variable.
#

DHCP="no"
DHCP_SERVER="195.22.90.65"

#
1.1.2 PPPoE
#

Configuration options pertaining to PPPoE.
#
If you have problem with your PPPoE connection, such as large mails not
getting through while small mail get through properly etc, you may set
this option to "yes" which may fix the problem. This option will set a
rule in the PREROUTING chain of the mangle table which will clamp
(resize) all routed packets to PMTU (Path Maximum Transmit Unit).
#
Note that it is better to set this up in the PPPoE package itself, since
the PPPoE configuration option will give less overhead.
#

PPPOE_PMTU="no"

#
1.2 Local Area Network configuration.
#
your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0
#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE="lo"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

###
#
2. Module loading.
#

#
Needed to initially load modules
#

/sbin/depmod -a

#
2.1 Required modules
#

/sbin/modprobe ip_conntrack
/sbin/modprobe ip_tables
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_MASQUERADE

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_REJECT
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

###
#
3. /proc set up.
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

###
#
4. rules set up.
#

######
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed
$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \
-m state --state NEW -j REJECT --reject-with tcp-reset
$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"
$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

#
UDP ports
#

$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT
if [$DHCP == "yes"] ; then
 $IPTABLES -A udp_packets -p UDP -s $DHCP_SERVER --sport 67 \
 --dport 68 -j ACCEPT
fi

#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 123 -j ACCEPT
$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 2074 -j ACCEPT
$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 4000 -j ACCEPT

#
In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.
#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE \
#--destination-port 135:139 -j DROP

#
If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d 255.255.255.255 \
#--destination-port 67:68 -j DROP

#
ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -s $LAN_IP_RANGE -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -j ACCEPT

#
Special rule for DHCP requests from LAN, which are not caught properly
otherwise.
#

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -j ACCEPT

#
Rules for incoming packets from the internet.
#

$IPTABLES -A INPUT -p ALL -i $INET_IFACE -m state --state ESTABLISHED,RELATED \
-j ACCEPT
$IPTABLES -A INPUT -p TCP -i $INET_IFACE -j tcp_packets
$IPTABLES -A INPUT -p UDP -i $INET_IFACE -j udp_packets
$IPTABLES -A INPUT -p ICMP -i $INET_IFACE -j icmp_packets

#
If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs
#

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 -j DROP

#
Log weird packets that don't match the above.
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don't want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
4.1.6 OUTPUT chain
#

#
Bad TCP packets we don't want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP's to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -o $INET_IFACE -j ACCEPT

#
Log weird packets that don't match the above.
#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

######
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

#
4.2.5 POSTROUTING chain
#

if [$PPPOE_PMTU == "yes"] ; then
 $IPTABLES -t nat -A POSTROUTING -p tcp --tcp-flags SYN,RST SYN \
 -j TCPMSS --clamp-mss-to-pmtu
fi
$IPTABLES -t nat -A POSTROUTING -o $INET_IFACE -j MASQUERADE

#
4.2.6 OUTPUT chain
#

######
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

http://www.linuxhowtos.org/Security/iptables.pdf

page 104 of 107

Example rc.flush-iptables script

#!/bin/sh

rc.flush-iptables - Resets iptables to default values.

Copyright (C) 2001 Oskar Andreasson >bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

#
Configurations
#
IPTABLES="/usr/sbin/iptables"

#
reset the default policies in the filter table.
#
$IPTABLES -P INPUT ACCEPT
$IPTABLES -P FORWARD ACCEPT
$IPTABLES -P OUTPUT ACCEPT

#
reset the default policies in the nat table.
#
$IPTABLES -t nat -P PREROUTING ACCEPT
$IPTABLES -t nat -P POSTROUTING ACCEPT
$IPTABLES -t nat -P OUTPUT ACCEPT

#
reset the default policies in the mangle table.
#
$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

#
flush all the rules in the filter and nat tables.
#
$IPTABLES -F
$IPTABLES -t nat -F
$IPTABLES -t mangle -F
#
erase all chains that's not default in filter and nat table.
#
$IPTABLES -X
$IPTABLES -t nat -X
$IPTABLES -t mangle -X

http://www.linuxhowtos.org/Security/iptables.pdf

page 105 of 107

Example rc.test-iptables script

#!/bin/bash
#
rc.test-iptables - test script for iptables chains and tables.
#
Copyright (C) 2001 Oskar Andreasson >bluefluxATkoffeinDOTnet>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it
from; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
#

#
Filter table, all chains
#
iptables -t filter -A INPUT -p icmp --icmp-type echo-request \
-j LOG --log-prefix="filter INPUT:"
iptables -t filter -A INPUT -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="filter INPUT:"
iptables -t filter -A OUTPUT -p icmp --icmp-type echo-request \
-j LOG --log-prefix="filter OUTPUT:"
iptables -t filter -A OUTPUT -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="filter OUTPUT:"
iptables -t filter -A FORWARD -p icmp --icmp-type echo-request \
-j LOG --log-prefix="filter FORWARD:"
iptables -t filter -A FORWARD -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="filter FORWARD:"

#
NAT table, all chains except OUTPUT which don't work.
#
iptables -t nat -A PREROUTING -p icmp --icmp-type echo-request \
-j LOG --log-prefix="nat PREROUTING:"
iptables -t nat -A PREROUTING -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="nat PREROUTING:"
iptables -t nat -A POSTROUTING -p icmp --icmp-type echo-request \
-j LOG --log-prefix="nat POSTROUTING:"
iptables -t nat -A POSTROUTING -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="nat POSTROUTING:"
iptables -t nat -A OUTPUT -p icmp --icmp-type echo-request \
-j LOG --log-prefix="nat OUTPUT:"
iptables -t nat -A OUTPUT -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="nat OUTPUT:"

#
Mangle table, all chains
#
iptables -t mangle -A PREROUTING -p icmp --icmp-type echo-request \
-j LOG --log-prefix="mangle PREROUTING:"
iptables -t mangle -A PREROUTING -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="mangle PREROUTING:"
iptables -t mangle -I FORWARD 1 -p icmp --icmp-type echo-request \
-j LOG --log-prefix="mangle FORWARD:"
iptables -t mangle -I FORWARD 1 -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="mangle FORWARD:"
iptables -t mangle -I INPUT 1 -p icmp --icmp-type echo-request \
-j LOG --log-prefix="mangle INPUT:"
iptables -t mangle -I INPUT 1 -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="mangle INPUT:"
iptables -t mangle -A OUTPUT -p icmp --icmp-type echo-request \
-j LOG --log-prefix="mangle OUTPUT:"
iptables -t mangle -A OUTPUT -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="mangle OUTPUT:"
iptables -t mangle -I POSTROUTING 1 -p icmp --icmp-type echo-request \
-j LOG --log-prefix="mangle POSTROUTING:"
iptables -t mangle -I POSTROUTING 1 -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="mangle POSTROUTING:"

http://www.linuxhowtos.org/Security/iptables.pdf

page 106 of 107

rate this article:
current rating:
Your rating:

image:rdf newsfeed / //static.linuxhowtos.org/data/rdf.png (null)
 |
image:rss newsfeed / //static.linuxhowtos.org/data/rss.png (null)
 |
image:Atom newsfeed / //static.linuxhowtos.org/data/atom.png (null)
- Powered by
image:LeopardCMS / //static.linuxhowtos.org/data/leopardcms.png (null)
 - Running on
image:Gentoo / //static.linuxhowtos.org/data/gentoo.png (null)
 -
Copyright 2004-2020 Sascha Nitsch Unternehmensberatung GmbH
image:Valid XHTML1.1 / //static.linuxhowtos.org/data/xhtml.png (null)
 :
image:Valid CSS / //static.linuxhowtos.org/data/css.png (null)
 :
image:buttonmaker / //static.linuxhowtos.org/data/buttonmaker.png (null)
- Level Triple-A Conformance to Web Content Accessibility Guidelines 1.0 -
- Copyright and legal notices -
Time to create this page: ms
<!--
image:system status display / /status/output.jpg (null)
-->

http://www.linuxhowtos.org/Security/iptables.pdf

page 107 of 107

